arXiv:2509.16389v1 [cs.CR] 19 Sep 2025

LiTERSAN: Lightweight Memory Safety Via Rust-specific Program
Analysis and Selective Instrumentation

Tianrou Xia
The Pennsylvania State
University
tzx17@psu.edu

Kaiming Huang
The Pennsylvania State
University
kzh529@psu.edu

Jie Zhou
The George Washington
University
jie.zhou@gwu.edu

ABSTRACT

Rust is a memory-safe language, and its strong safety guarantees
combined with high performance have been attracting widespread
adoption in systems programming and security-critical applica-
tions. However, Rust permits the use of unsafe code, which by-
passes compiler-enforced safety checks and can introduce memory
vulnerabilities. A widely adopted approach for detecting memory
safety bugs in Rust is Address Sanitizer (ASan). Optimized versions,
such as ERASan and RustSan, have been proposed to selectively
apply security checks in order to reduce performance overhead.
However, these tools still incur significant performance and mem-
ory overhead and fail to detect many classes of memory safety
vulnerabilities due to the inherent limitations of ASan.

In this paper, we present LITERSAN, a novel memory safety
sanitizer that addresses the limitations of prior approaches. By
leveraging Rust’s unique ownership model, LITERSAN performs
Rust-specific static analysis that is aware of pointer lifetimes to
identify risky pointers. It then selectively instruments risky point-
ers to enforce only the necessary spatial or temporal memory safety
checks. Consequently, LITERSAN introduces significantly lower run-
time overhead (18.84% versus 152.05% and 183.50%) and negligible
memory overhead (0.81% versus 739.27% and 861.98%) compared
with existing ASan-based sanitizers while being capable of detect-
ing memory safety bugs that prior techniques miss.

1 INTRODUCTION

Memory-safe programming languages have emerged as a promis-
ing approach [74] to mitigate prevalent memory safety vulner-
abilities, which account for 70%—80% of all software vulnerabili-
ties [36, 46, 73]. Among these languages, Rust [22] stands out by
enforcing strong compile-time safety guarantees. Its advanced type
system detects security issues early and helps confine additional
costs to protect safety-critical operations. Studies show that, aside
from these checks, Rust’s performance can closely match that of
C/C++ [81]. Consequently, Rust has rapidly gained adoption in
security-critical and performance-sensitive domains [10, 37, 66].
Despite its robust safety guarantees, Rust’s type system is not
flawless. It can be too restrictive, preventing the expressiveness
required for low-level systems programming, or it may introduce
prohibitive runtime overhead in performance-critical code paths.

Dinghao Wu
The Pennsylvania State
University
dinghao@psu.edu

Yuseok Jeon
Korea University
ys_jeon@korea.ac.kr

Dongyeon Yu
UNIST
dy3199@unist.ac.kr

Taegyu Kim
The Pennsylvania State
University
tgkim@psu.edu

Consequently, Rust permits unsafe code, such as raw pointer deref-
erences or calling external C library functions [2, 12, 48], enabling
developers to bypass Rust’s memory safety checks. Nevertheless,
the use of unsafe Rust code reintroduces memory safety vulnerabili-
ties, such as buffer overflows and Use-After-Free (UAF) bugs, under-
mining Rust’s foundational memory-safety benefits [39, 40, 48, 79].

Various detection and mitigation mechanisms have been pro-
posed to address memory safety challenges introduced by unsafe
Rust. Static analysis tools, such as Rudra [4], MirChecker [28], and
SafeDrop [9], have successfully identified many real-world vulner-
abilities in Rust programs. However, these tools typically suffer
from high false positives (e.g., Rudra reports approximately 89%
false positives [4]), and have limited capability in detecting diverse
bug types [8, 38]. Memory isolation techniques, such as XRust [31],
TRust [5] and PKRUSafe [21], provide runtime protection by re-
stricting unsafe code’s access to memory objects exclusively used
by safe code. Nonetheless, these approaches target only subsets of
memory objects and primarily focus on spatial memory errors (e.g.,
buffer overflows) while neglecting temporal memory errors such as
UAF. Rust fuzzing frameworks [60-62, 80] have also emerged to de-
tect memory safety vulnerabilities. However, it is well-known that
the probabilistic nature of the fuzzing approach results in challenges
of systematical detection of memory errors [6].

Researchers have also developed tools based on Address Sanitizer
(ASan) [65]—a compiler-based memory error detector—to reveal
memory safety vulnerabilities in Rust. Compared to static analysis
(limited bug detection capability), memory isolation (partial protec-
tion), and fuzzing (probabilistic by nature), ASan-based approaches
provide deterministic dynamic validation of every memory access.
Notably, ERASan [38] and RustSan [8] have advanced this area by
optimizing away redundant checks for memory accesses already
instrumented by the Rust compiler, thereby significantly reducing
ASan’s runtime overhead by 71.4% and 62.3%, respectively.

Despite these advances, existing ASan-based tools still do not
fully align with Rust’s native safety guarantees. Although ERASan
and RustSan remove certain checks already enforced by Rust’s type
system, their reliance on traditional C/C++ pointer analyses (i.e.,
SVF [69]) leads to significant over-approximation of unsafe point-
ers, as such analyses are not integrated with Rust’s ownership and
borrowing semantics [25]. As a result, both tools introduce super-
fluous checks for memory accesses that are already guaranteed to
be safe, imposing unnecessary runtime overhead. In addition, the

https://arxiv.org/abs/2509.16389v1

static analysis time of ERASan and RustSan is prohibitively high,
increasing compilation time by 1,635.35% and 1,193.31% per our
measurements, due to their reliance on SVF, which is particularly
expensive for large programs [21]. Furthermore, ASan suffers from
inherent limitations in bug detection. Its red zones can be bypassed
by overflows that exceed the boundaries, and its shadow memory
mechanism may fail to detect UAF bugs when freed memory is
reallocated post-quarantine, which makes dangling pointers to the
original object undetectable. These gaps cause ASan-based tools to
provide incomplete bug coverage despite significant overhead.

To address these limitations, our goal is to design a memory error
detection mechanism tailored to Rust’s inherent safety guarantees
while addressing the loopholes introduced by unsafe code and
the weaknesses of existing detection frameworks. Specifically, we
strive to (1) identify pointers that truly pose spatial or temporal
risks by incorporating a Rust-specific static analysis, eliminating
extraneous checks on pointers that are either statically-proven safe
or protected with compiler-inserted checks, (2) maintain complete
coverage and precision in detecting all classes of memory errors,
including spatial and temporal errors without using heavyweight
ASan-based approaches, and (3) minimize overhead by integrating
Rust’s ownership and borrowing rules into both static analysis and
enforcing selective instrumentation for lightweight runtime checks.

Achieving these three objectives requires addressing three major
challenges: (1) Rust’s allowance of raw pointers within otherwise
safe code complicates standard pointer analysis, as many may-alias
inferences valid in the C/C++ context break under Rust’s stricter
ownership model, (2) bridging static checks and runtime validation
demands a lightweight metadata design that captures Rust memory
safety model, and (3) avoiding expensive and coarse-grained ASan-
based runtime checks. To address these challenges, we developed
LiTERSAN (LITE-Rust-SaNitizer), which deploys a Rust-specific
static analysis to pinpoint truly risky pointers and selectively in-
strument them with minimal metadata to detect both spatial and
temporal memory errors at runtime. This synergy of compile-time
insights and targeted runtime checks enables comprehensive and
accurate memory error detection with minimal overhead across 28
widely used Rust benchmarks: only 18.84% runtime, 0.81% mem-
ory and 97.21% compile-time overhead. In contrast, ERASan incurs
152.05% runtime, 739.27% memory, and 1,635.35% compile-time
overhead, while RustSan incurs 183.50%, 861.98%, and 1,193.31%.

In summary, we make the following contributions:

o Rust-specific Taint Analysis: We introduce a Rust-specific
static analysis scheme that identifies risky pointers by integrating
Rust’s ownership and borrowing semantics rather than defaulting
to generic pointer analysis.

Lightweight Metadata Inference and Runtime Checks: We
design a compact metadata mechanism for runtime validation of
spatial and temporal safety, removing the heavyweight compo-
nents (e.g., red zones and shadow memory) of classic sanitizers.

o Comprehensive and Efficient Bug Detection: Our approach,
LITERSAN, systematically detects spatial and temporal memory
errors in Rust. Compared to prior Rust sanitizers, LITERSAN
offers complete coverage and higher accuracy in detecting bugs
while minimizing compile-time, runtime, and memory overhead
compared with existing ASan-based tools.

2 BACKGROUND

In this section, we explain the background on Rust’s safety guar-
antees and root causes of memory safety violations (§2.1). We also
briefly discuss pointer analyses and AddressSanitizer (ASan) [65],
which are commonly used by existing Rust memory safety tools,
along with their limitations (§2.2 and §2.3). Finally, we present a
motivating example to illustrate the redundant checks applied by
prior ASan-based sanitizers (§2.4).

2.1 Rust’s Memory Safety Guarantee

Spatial memory safety. Rust prevents out-of-bounds memory
accesses by disallowing explicit pointer arithmetic on references
and by internally maintaining spatial metadata (e.g., capacity and
length) for containers, such as vector [22]. At compile time, the
compiler either verifies the safety of a memory dereference or in-
serts runtime checks to detect any out-of-bounds access. However,
Rust also permits unsafe code regions in which developers can ma-
nipulate raw pointers directly. These unsafe constructs bypass the
compiler’s spatial checks and can lead to memory safety violations,
making them the root cause of out-of-bounds errors [2, 38, 48].

Temporal memory safety. Through its ownership and borrowing
model, Rust ensures that each memory object has a single owner
and that all borrowed references remain valid only as long as that
owner is in scope [22]. This prevents use-after-free and double
free by enforcing deallocation once the owner goes out of scope.
Nevertheless, unsafe code regions allow the creation and handling of
raw pointers in ways that can violate the ownership rules, enabling
temporal errors if these pointers outlive their underlying objects. As
with spatial safety, these unsafe constructs are the primary source
of temporal memory safety violations.

2.2 Pointer Analyses in Rust

Prior work on identifying unsafe pointers (i.e., those that may
lead to memory errors) in Rust typically relies on classical alias
analysis [15]. In C/C++ contexts, such analysis often produces over-
approximation: when it cannot disprove aliasing between two point-
ers, the analysis labels them as may-alias [11, 16]. This approach
does not account for Rust’s ownership and borrowing rules, where
each object has a unique owner and references are strictly man-
aged. Consequently, it leads to unnecessary and even higher false
positives in Rust context compared with C/C++, as many pointers
flagged are actually safely managed by the Rust compiler.

A prominent example is SVF [69], a state-of-the-art pointer alias
analysis tool, used by both ERASan [38] and RustSan [8]. While
SVF supports sophisticated inter-procedural and context-sensitive
analyses, it suffers from two key drawbacks when applied to Rust.
First, SVF’s alias analysis significantly over-approximates due to its
inability to leverage Rust’s strict ownership semantics, resulting in
the imprecise identification of unsafe pointers. Second, SVF incurs
substantial analysis time, particularly on medium to large code
bases [21, 27]. While powerful in theory, SVF introduces consid-
erable computational overhead and scalability issues, making it
impractical for large-scale analysis pipelines.

2.3 Address Sanitizer and Its Limitations

Address Sanitizer (ASan) [65] is a widely adopted tool for detecting
memory safety violations at runtime, including both spatial errors
and temporal errors. Its practicality and effectiveness have led
to broad integration across major compilers and use in projects
written in C, C++, and Rust. ASan instruments each memory access
instruction with runtime checks to validate its legitimacy.

ASan detects memory errors using three core mechanisms: red
zones, shadow memory, and quarantine. However, ASan’s red zones
are limited in size, as large overflows that bypass ASan’s red zones
evade detection. Meanwhile, once a memory region is freed and
subsequently reallocated, the shadow memory is updated for the
new allocation, erasing the evidence of original dangling pointers.
Even with the quarantine mechanism that temporarily delays the
reuse of freed memory regions by placing them in a quarantine
pool, this protection is short-lived. Thus, ASan may miss temporal
violations if a quanrantined region is reallocated while dangling
pointers to the region are still in scope.

In addition to its incomplete coverage, ASan introduces substan-
tial runtime and memory overhead. Typical performance slowdown
ranges from 2-3x, and the red zone and shadow memory can cause
the overall memory overhead to grow by several times. These limita-
tions highlight the need for a more precise and lightweight memory
safety mechanism. Ideally, such a mechanism would avoid red zones
and shadow memory while preserving strong detection capabilities
for both spatial and temporal safety violations.

2.4 Motivating Example

While Rust enforces memory safety for most memory accesses
(§2.1), severe errors (e.g., buffer overflows and UAF) can still occur
when unsafe code is used. Listing 1 shows an example of a common
scenario in web applications (e.g., Servo [66]).

1 struct Cache {
2 ptr: Option<xmut u8>,

3 %

5 impl Cache {
6 fn save(&mut self, ptr: xmut u8) {
7 self.ptr = Some(ptr);?}

9 fn load(&self) -> Box<String> {
10 unsafe {
11 Box: :from_raw(self.ptr.unwrap())}}

12}
¢+ fn main() {
15 let mut cache = Cache { ptr: None };
16 let token = Box::from()
println!(, token);
18 {
19 let local_token = token;
20 cache.save(local_token.as_ptr() as *mut u8);
21 // local_token goes out of scope here.
2
23 let stale_token = cache.load(); // Dangling pointer
2 println!(, stale_token); // UAF
5}

Listing 1: Use-after-free by caching a raw pointer after ownership transfer.

In Listing 1, the string “session-token” is a heap object allo-
cated at line 16. A smart pointer, token, points to and owns this
object. At line 19, ownership is transferred: a new smart pointer,
local_token, takes the ownership of the heap object. Lines 20
and 7 define a raw pointer, self.ptr, derived from local_token.
This raw pointer does not take the ownership of the string, so the
owner remains local_token. local_token goes out of scope at the
end of line 21, causing the object it owns to be deallocated. The raw
pointer self.ptr then becomes dangling. At line 23, a new smart
pointer, stale_token, is created from the dangling raw pointer,
and it also becomes dangling. Then, all subsequent dereferences of
the two dangling pointers are UAF (e.g., the one at line 24).

ASan instruments all memory accesses, which can be redundant,
incurring high performance and memory overhead without guaran-
teeing comprehensive memory safety.! For the example in Listing 1,
no spatial memory safety check is necessary. For temporal memory
safety, the dereference of token (line 17) does not require safety
instrumentation, as Rust’s ownership model ensures its validity.

To address this deficiency, prior work—namely, ERASan [38] and
RustSan [8]—improves ASan’s performance by selectively instru-
menting only raw pointers, or pointers in unsafe code, and their
aliases. However, for the example discussed here, conventional alias
analysis would identify all pointers in Listing 1 as aliases to the raw
pointer self.ptr in unsafe code, resulting in redundant checks
inserted to the dereference site of a safe pointer (e.g., line 17). This
redundancy stems from insufficient consideration of Rust’s memory
safety guarantees, leading to over-approximating and instrument-
ing safe pointer dereferences.

2.5 Ideal Memory Error Detection for Rust

Ideally, a Rust memory safety sanitizer should: (1) leverage Rust’s
memory safety model to precisely differentiate safe pointers (e.g.,
token) from unsafe ones (e.g., self.ptr); (2) selectively instru-
ment only unsafe pointers, avoiding redundant checks on Rust-
guaranteed safe pointers; and (3) provide comprehensive, accurate,
and efficient detection of all memory error classes. Such an approach
narrows safety checks to only unsafe operations, incurring minimal
overhead while ensuring comprehensive detection coverage.

3 THREAT MODEL AND CHALLENGES

In this section, we introduce the threat model and the challenges to
be addressed through the design and implementation of LITERSAN.

3.1 Threat Model

We assume that memory errors, including both spatial (e.g., out-of-
bound read/write) and temporal (e.g., UAF and double-free) errors,
are possible in Rust programs. Our goal is to detect all such mem-
ory errors. While directly-linked C/C++ libraries may also contain
memory errors, we focus on Rust source code and neither ana-
lyze nor harden such external libraries. We also assume that no
extra memory safety defenses are deployed beyond Rust’s built-in
safety support. Memory leaks are out of scope, as they are generally

! As evaluated in MSET [76], ASan failed to detect around 50% of C/C++ memory errors
in their constructed benchmark. We believe the rationale would be similar for Rust, as
ASan is not aware of Rust’s memory safety model.

Spatially Temporally
Risky Pointers Risky Pointers
Deference with Deference after

Offset being Dangling
> Initialized
2
(e gth) (> Capaclty) (Null?) (Access) (Free)
Use-before- Null Pointer
Eﬂlhal IzallorJ E)OB Acces% ﬂ)e reference) (UAF J E)ouble Free]

Figure 1: Memory safety bug patterns in Rust programs.

not classified as memory safety violations [42, 43, 65, 70]. Figure 1
shows the complete set of the bug patterns that LITERSAN covers,
as ASan-based tools [8, 38] do in Rust programs.
Non-memory-safety errors, such as concurrency bugs and logic
errors, are outside the protection scope of LITERSAN. In addition,
L1TERSAN is not designed to detect type conversion bugs. Notably,
Rust’s std: :mem: : transmute() [53] allows converting the type
of an object to any other type. LITERSAN does not address errors
caused by misusing this dangerous API. However, LITERSAN can
detect type confusion bugs that arise from temporal errors, such as
UAF. As mentioned above, LITERSAN does not target external C/C++
libraries. Therefore, cross-language attacks [35] that propagate
exploitation from components written in unsafe languages (e.g.,
C/C++) are out of scope and can be addressed by existing works [50].

3.2 Challenges

As discussed in §1 and §2, existing memory error detection ap-
proaches are both incomplete and inefficient. Static analyzers [4, 28]
often produce a high number of false positives, while ASan-based
techniques [8, 38] incur significant performance overhead and
still fail to detect many bugs. We observed that the shortcomings
of ASan-based tools largely stem from analyzing Rust in LLVM
IR [26]—a language-independent, low-level compiler intermediate
representation, using generic pointer analysis [69] without account-
ing for Rust’s unique memory safety guarantees.

To propose our approach, we first introduce the key concept of
risky pointer, which will be used throughout the rest of this paper.

Definition 3.1. A risky pointer is a pointer whose dereferences
may violate memory safety. Such a pointer is spatially risky if it
bypasses Rust’s spatial enforcements, or temporally risky if it may
outlive its referenced object.

Detailed explanations of spatially and temporally risky pointers
are presented in §5.2. Note that (1) a pointer may be both spatially
and temporally risky; (2) A raw pointer becomes risky only when it
is exposed in unsafe code (Definition 3.2); and (3) Rust’s native smart
pointers may also be risky. For example, constructing multiple
smart pointers from a raw pointer may violate Rust’s ownership
rules, rendering these smart pointers risky and potentially causing
UAF bugs that elude compiler checks.

Definition 3.2. An exposed raw pointer is a raw pointer directly
used in unsafe code, bypassing Rust’s safety guarantees.

We identify three key challenges in building an efficient and
comprehensive memory safety sanitizer tailored to Rust.
e C1: Leveraging Rust’s unique type system to precisely
identify risky pointers. Program analysis for Rust in prior

work [5, 8, 31, 38] does not utilize Rust’s ownership and borrow-
ing semantics, significantly over-approximating risky pointers. A
refined approach should integrate Rust’s intrinsic memory safety
model to more precisely identify risky pointers.

e C2: Managing lightweight safety metadata for runtime
checks. Relying on a coarse-grained protection scheme like
ASan’s shadow memory and red zones [65] is expensive and im-
precise. Tailoring compact yet fine-grained metadata that incor-
porates Rust’s memory safety guarantees enables more efficient
and accurate runtime error detection. Additionally, because raw
pointers lack spatial metadata (i.e., bounds information), LITER-
SAN must infer and maintain their metadata to enable runtime
validation.

e C3:Minimizing overhead while ensuring coverage. AsRust’s
memory safety model already protects a substantial amount of
memory accesses, additional checks are only needed for those
involving risky pointers. The challenge is to minimize cost while
maintaining accuracy and comprehensiveness by (1) selectively
instrumenting only the truly risky pointers based on their specific
risk types and (2) enforcing an efficient runtime check mechanism
rather than incomplete and inefficient ASan-style checks.

By addressing these challenges, LITERSAN complements Rust’s
inherent memory safety guarantees with precise instrumentation
to achieve comprehensive and low-overhead runtime safety checks,
closing the gap left by prior work [8, 38].

4 OVERVIEW

To address the three key challenges described in §3.2, we propose a
Rust-specific static analysis to identify risky pointers. Coupling it
with a metadata-based runtime checking mechanism, we develop
our prototype system, LITERSAN. Figure 2 illustrates the main com-
ponents and the overall workflow of LITERSAN.

Stage 1 conducts Rust-specific static analysis to addresses C1.
LITERSAN first pre-processes the target Rust program using reacha-
bility analysis to narrow the analysis scope to potentially reachable
functions (§5.1). Within this scope, LITERSAN identifies both Spa-
tially Risky Pointers (§5.3) and Temporally Risky Pointers (§5.4). Since
the misuse of exposed raw pointers is the primary cause of memory
safety violations in Rust, LITERSAN begins by identifying them.
It annotates the instructions involving raw pointers during Mid-
level IR (MIR) [57] to LLVM IR code generation, and analyzes the
definitions and uses of these pointers in annotated instructions to
identify exposed raw pointers, which are classified as both spatially
and temporally risky because they are exempt from Rust’s compile-
time safety enforcement. To identify additional temporally risky
pointers, LITERSAN performs lifetime-aware taint analysis starting
from exposed raw pointers. This is necessary because exposed raw
pointers can propagate temporal risks to other pointers referencing
the same memory object. In contrast, spatial risks do not propagate
if raw pointer arithmetic and dereference is instrumented with
bounds checking. Additionally, LITERSAN identifies risky pointers
used in unsafe APIs that may cause memory safety violations.

Stage 2 constructs lightweight spatial and temporal metadata
to address C2 (§6.1 §6.2), enabling efficient runtime validation. For

(" Stage 1: Rust-specific Static Analysis (§5) \ [Stage 3: Instr and Checks (§6.3-6.4) N\
.) " spatial) [Temporal
| Rust Program 1 P y |)
I Source :_> \ Metadat_a ‘ _M_etad_at_a -7
\ o __ /
(fTTT T DY e N i N
| Runtime Metadata Updatil
| Risky Pointers —— Jiime ek Idane
‘o _____ L 1
Runtime Spatial Checks |
(§6.4))
’— ———————— ~ P " | ST o-s----=-—-==-=-
~ - || ooccococoocooooos
I‘ Metag:ti:t;::rymg > Runtime Tempc)bral Checks |
’ .4)]
|I Associated ‘I |I Exposed Raw \I \ ~~—~—~—~—-—"—"-—"-—"-" T === === 0 — J
| Pointers | | Pointers | *
N -
| (Stage 2: Metadata Inference (§ 6.1-6.2) \
! ! ————————- S
| | | Metadata-carrying |
I 1 1 Poi] e ~
. ointers 1 . 1
: : __ Spatial N ”] Spatial !
\ | Capacity, Initialized Length, Offset | Metadata 1
1 [y Voccccooeos 4
| ainted |
: : 1 Pointers I
1 1 S-- _;_ - May-alias Relationship
Y y Y ___ ———————-- ~
[Risky Pointers] ! Temporal)
(s st | —»! P |
! "‘ Spatially Risky :‘ "Temporally Risky“‘ | ! Metadata)
[o T i N -
(] Pointers b Pointers i Temporal S
[P S]

Figure 2: LiTeERSAN overview. LITERSAN consists of three stages. Each addresses one of the primary challenges in enabling efficient and comprehensive

sanitizer checks. The output of each stage serves as the input to the next.

spatially risky pointers, LITERSAN maintains three pieces of meta-
data: capacity, initialized length and offset. When spatial metadata
is unavailable at a pointer’s definition site (e.g., an exposed raw
pointer derived from other pointers), LITERSAN backtracks pointer
derivations (Definition 5.1) to extract metadata from the object’s al-
location site. This process also identifies metadata-carrying pointers,
which are responsible for transmitting spatial metadata at runtime.

For temporally risky pointers, the risk arises from shared access
to the same memory object. Once the object is deallocated by its
owner or via an unsafe API, all referencing pointers that remain
in scope become dangling. To address this, LITERSAN maintains
may-alias relationships and ownership information as temporal
metadata. May-aliases are established during Stage 1 via taint anal-
ysis, as pointers tainted by the same exposed raw pointer reference
the same object. Among these, LITERSAN analyzes pointer types
and Drop implementations [59] to identify owners.

Stage 3 addresses C3 by selectively instrumenting identified
risky pointers and metadata-carrying pointers (§6.3), thereby mini-
mizing runtime overhead while preserving the comprehensive cov-
erage of runtime checks. Leveraging spatial and temporal metadata
collected in Stage 2 and updating it during execution, LITERSAN
performs accurate and comprehensive detection of both spatial and
temporal memory errors (§6.4). The complete set of memory safety
bugs detectable by LITERSAN is summarized in Figure 1.

5 RUST-SPECIFIC STATIC ANALYSIS

In this section, we present LITERSAN’s Rust-specific static analysis,
which addresses the challenge of identifying risky pointers (C1)
discussed in §3.2. We begin by defining the scope of the analysis in
§5.1 and introducing the definition of risky pointers in §5.2. We then
describe our approach to identifying spatially and temporally risky
pointers in §5.3 and §5.4, respectively, and conclude this section by
discussing soundness and precision in §5.5.

5.1 Static Analysis Scope Restriction

LITERSAN restricts its static analysis to reachable functions, mo-
tivated by the structure of Rust programs, which often include
deeply nested library code, much of which is dead code (i.e., un-
reachable from the program entry point?). To exclude such dead
code from LITERSAN’s analysis, LITERSAN performs reachability
analysis to conservatively identify and analyze only potentially
reachable functions which will be executed at runtime.

Specifically, starting from the program’s entry point, LITERSAN
identifies and enqueues both directly called functions and address-
taken functions (i.e., potential indirect call targets [33, 78]) for anal-
ysis. For each function in the queue, LITERSAN recursively discovers
and further enqueues the function’s callees and address-taken func-
tions, thereby restricting its analysis scope to functions potentially
reachable during execution. By limiting analysis to reachable func-
tions, LITERSAN focuses on identifying risky pointers within this
scope that may lead to memory safety violations.

5.2 Risky Pointer Definition

Within LITERSAN’s restricted analysis scope, most pointers are safe
thanks to Rust’s native safety guarantees for safe code, as discussed
in §2.1. However, a subset of pointers remains unprotected and
may still violate memory safety. We refer to these as risky pointers
(Definition 3.1), and LITERSAN focuses its safety checks exclusively
on them. For fine-grained analysis and instrumentation, we further
classify risky pointers into spatially risky and temporally risky
categories, corresponding to potential violations of spatial and
temporal memory safety, respectively.

Spatially risky pointers include (1) exposed raw pointers and
(2) smart pointers used in certain unsafe APIs. Unlike encapsulated
raw pointers within smart pointers, which enforce Rust’s safety

The entry point is typically the main function. For library crates compiled with built-
in benchmarks, benchmarking functions compiled and included in LLVM IR are treated
as entry points as well.

guarantees, exposed raw pointers are spatially unsafe because ar-
bitrary pointer arithmetic is permitted on them, which may result
in invalid pointers whose dereferences are out-of-bound and not
checked. Moreover, Rust’s standard libraries (e.g. std) provide un-
safe APIs that may subvert bounds checking if misused [3, 20].
When a pointer is used in conjunction with such unsafe APIs, it is
considered spatially risky.

Temporally risky pointers include (1) exposed raw point-
ers and (2) any wvalid (i.e., in-scope according to Rust’s scoping
rules [58]) pointers that reference the same memory object as an
exposed raw pointer. Exposed raw pointers are temporally unsafe
because they are exempt from Rust’s ownership rules; once the ref-
erenced object is deallocated, such raw pointers become dangling.
Furthermore, as illustrated in §2.4, if a smart pointer is constructed
from an exposed raw pointer and takes ownership of an object that
already has an owner, multiple owners will coexist. Deallocating
the object through one owner leaves the others dangling. Invalid
pointers whose lifetimes have ended (e.g., token in Listing 1) are
excluded from temporally risky pointers, since any use of them is
prevented by Rust compiler.

5.3 Spatially Risky Pointer Identification

Exposed raw pointers. The misuse of exposed raw pointers is
a primary cause of memory safety bugs in Rust programs [38]. To
identify them, LITERSAN first tracks all raw pointers via LLVM IR
metadata annotation during the MIR-to-LLVM IR lowering phase,
followed by a fine-grained filtering to determine which are exposed
raw pointers, as outlined in §4.

Based on ERASan [38]’s approach, LITERSAN attaches cus-
tom LLVM metadata [32] to IR instructions by modifying the
codegen-ssa and codegen-11vm components of the rustc com-
piler. To determine the locations of annotations, LITERSAN performs
a type-matching analysis during the MIR-to-LLVM IR lowering
phase. Specifically, it analyzes the types of program variables and
expressions in the MIR (i.e., Rust’s mid-level representation) to
identify those involving raw pointers (e.g., *const T). If a value
is of raw pointer type, the corresponding LLVM IR instruction is
tagged with ! rawptr. Additionally, instructions originating from
unsafe code are marked with !unsafe. This analysis allows LITER-
SAN to propagate type information from Rust’s MIR and identify
the instructions relevant to raw pointers in the resulting LLVM IR.

After annotating the LLVM IR, LITERSAN analyzes instructions
tagged with !rawptr to filter out encapsulated raw pointers and
identify only exposed raw pointers. These annotated instructions
either define or use raw pointers. For each definition, LITERSAN
checks whether this raw pointer is used within unsafe code by
examining the presence of the !unsafe metadata. If so, it is identi-
fied as an exposed raw pointer. For each use, LITERSAN similarly
checks whether it occurs in unsafe code and, if so, traces back to the
corresponding definition site to identify the exposed raw pointer.
In short, only raw pointers that are directly used within unsafe
code are identified for subsequent lifetime-aware taint analysis.
This filtering is crucial because encapsulated raw pointers within
safe abstractions (e.g., smart pointer creation) are never directly
dereferenced and therefore do not pose risks. Through this anal-
ysis, LITERSAN accurately identifies only exposed raw pointers

that may cause memory safety bugs, which are considered as risky
pointers—both spatially risky and temporally risky (see §5.2).

Unsafe APIs. AsRust’s standard libraries (e.g., std) provide unsafe
APIs that may cause spatial safety violations [3, 20], LITERSAN
analyzes these APIs to extend its protection. In general, an API
may be unsafe because (1) it directly uses exposed raw pointers
or (2) it subverts Rust’s bounds checks when misused. LITERSAN
can handle type (1) APIs by identifying underlying exposed raw
pointers using the method discussed above and marking them as
spatially risky.

Type (2) APIs are more challenging to address. A notable exam-
ple is vec: :set_len() [56], which can alter a vector’s length to
an arbitrary value, potentially resulting in out-of-bounds accesses
that bypass the compiler’s spatial safety checks. Automatically and
comprehensively identifying such APIs would requires analyzing
and understanding all library code, which is an undecidable prob-
lem [49]. Therefore, we manually examined Rust’s standard libraries
and identified nine APIs that may circumvent bounds checks (Ap-
pendix B). LITERSAN marks the pointers involved in these APIs as
spatially risky, updates their metadata, and inserts runtime checks
accordingly. For example, to detect out-of-bounds accesses poten-
tially caused by vec: :set_len(), LITERSAN retrieves the capacity
of the vector at its definition site and inserts a spatial check at the
APT’s call site to verify whether the new length (i.e., the argument
to vec: :set_len()) exceeds the legal capacity.

5.4 Temporally Risky Pointer Identification

To detect temporal memory safety violations, LITERSAN must go
beyond merely identifying exposed raw pointers (as discussed in
§5.3). It must also detect any valid pointer that might reference the
same memory object as an exposed raw pointer. This may sound
similar to finding all may-alias pointers to this memory object;
however, the key difference is that any may-alias smart pointers
that have been moved or gone out of scope should be excluded (e.g.,
token after line 19 in Listing 1).

One approach to identifying temporally risky pointers is to per-
form alias analysis on each exposed raw pointer, find the complete
set of pointers that refer to the same memory object, and then filter
out aliased pointers that are invalid. However, existing alias analy-
sis frameworks for LLVM (e.g. SVF [69]) conservatively mark two
pointers as may-alias whenever they cannot prove that the pointers
are not aliases, which leads to over-approximated alias sets even be-
fore accounting for the additional over-approximation introduced
by ignoring Rust’s safety guarantees. Furthermore, whole-program
alias analysis is generally highly expensive for large programs [21].
Therefore, we develop a new Rust-specific, inter-procedural, flow-
sensitive, lifetime-aware taint analysis to directly identify tempo-
rally risky pointers without relying on traditional alias analysis.

Illustrative example. We reuse the example in Listing 1 to briefly
illustrate the workflow of LITERSAN’s taint analysis. In this example,
an exposed raw pointer, self.ptr is defined at line 20 through an
existing smart pointer (local_token), which owns a heap object.
Here, the exposed raw pointer self.ptr serves as a taint source.
LITERSAN’s taint analysis performs two key operations to identify
temporally risky pointers to the object pointed by self.ptr:

e Backward propagation traces the ownership transfer preceding
the definition of the taint source. This includes identifying the
smart pointer (local_token) whose ownership is transferred
from token. Since token goes out of scope before self.ptr
is defined, the analysis terminates backward propagation at
local_token’s definition site (line 19) without tainting token.

e Forward propagation tracks pointers derived from the taint
source and taints them. In this example, a new pointer
stale_token is derived from self.ptr (line 23), making it be
tainted and identified as temporally risky.

In short, to capture all temporal safety violations, the taint anal-
ysis must consider both the preceding ownership history of any
object referenced by an exposed raw pointer (i.e., backward) and all
subsequent pointers derived from that raw pointer (i.e., forward).

Exposed raw pointer classification. To distinguish the exposed
raw pointers (taint sources) that require different taint analysis
propagation directions, we classify them as follow.

e Type 1 (T1) raw pointers: exposed raw pointers created by
referencing an object already owned by an existing smart pointer
(e.g., via Vec: :as_ptr() [55]). As shown in Listing 1, self.ptr
is derived from a valid smart pointer local_token. The creation
of such raw pointers implies existing ownership. Consequently,
T1 raw pointers require both backward taint analysis (to trace
the ownership history of the referenced object) and forward taint
analysis (to track subsequent pointer derivations).

Type 2 (T2) raw pointers: exposed raw pointers created to
reference a newly allocated memory object. Since there is no
preexisting ownership chain to consider, T2 raw pointers require
only forward taint analysis.

After locating these definitions, LITERSAN performs an inter-
procedural taint analysis starting from the definition site of each
exposed raw pointer (i.e., taint source) and propagating on only
forward or both directions according to the class of raw pointers.

Lifetime-aware taint analysis. LITERSAN performs a combina-
tion of backward and forward taint analysis, both of which track
pointer derivation instructions (Definition 5.1), augmented with
lifetime-aware propagation that respects Rust’s ownership rules,
to identify temporally risky pointers.

Definition 5.1. A pointer derivation instruction is any operation
that produces a new pointer value from an existing one, by one of
the following:

e Assignment (direct copy of a pointer),

e Computation (arithmetic or type conversion),

e Memory propagation (store/load through objects), or

o Inter-procedural transfer (via function calls or returns).

e Backward taint analysis: Starting from each taint source (i.e.,
the definition site of a T1 pointer), the analysis traces backward
along the derivation chain to the pointers from which T1 is
derived. These pointers share the same referenced object with
T1, and their definition sites are marked as taint sinks. This
propagation halts if ownership is transferred, as any further
use of the original owners is disallowed by the Rust compiler,
ensuring that the original owners are free from temporal memory
safety violations. In particular, if a pointer is invalidated before

the exposed raw pointer is defined—through function return for
stack pointers or through explicit drop for heap pointers—it is
considered safe and excluded from tainted pointers, as it can no
longer contribute to temporal safety violations.

e Forward taint analysis: Starting from each taint source (i.e.,
the definition site of a T1 or T2 pointer), the analysis propagates
taint to all pointers derived from it. Any pointer derived from
a tainted pointer is likewise marked as tainted. This forward
propagation continues until no further pointer derivations exist.

Inter-procedural analysis. Taint propagates inter-procedurally
through function calls and returns. For direct calls, forward prop-
agation flows from actual arguments at the call site to the corre-
sponding formal parameters of the callee, and from the callee’s
return value to the variable receiving it in the caller. Backward
propagation flows in the reverse direction and terminates at point-
ers that have been invalidated, such as those that are out of scope
or have transferred ownership.

For indirect calls, LITERSAN conservatively resolves potential
call targets using a type-based analysis [45, 75]. This approach
matches function signatures (i.e., function prototypes) at indirect
call sites with those of address-taken functions. Although more
advanced multi-layer type analysis techniques [33, 78] can improve
precision, they introduce additional static analysis overhead, while
the precision gain in Rust is limited. This is because Rust programs
typically rely less on dynamic dispatch [13, 34, 41] than programs in
other languages, and the multi-layered structural patterns common
in C/C++ are less prevalent in Rust. Once potential callees are
identified, taint is propagated in the same manner as for direct calls.

LiTERSAN adopts a worklist-based algorithm [44] adapted for
inter-procedural taint analysis, as presented in Algorithm 1. First,
it caches pointer derivations whose sources originate from other
functions, either directly (e.g., formal parameters) or indirectly (e.g.,
intermediate variables derived from formal parameters), and are
therefore unresolved within the current function context (lines 4-
10). After completing the initial pass over all functions, it performs
a depth-first search over the cached derivations to exhaustively
propagate taint (lines 11-25). This two-step process ensures that
all transitive taint relationships are resolved and that all potential
temporally risky pointers are identified. In addition, LITERSAN also
addresses temporally risky pointers involved with unsafe APIs,
similar to the approach described in §5.3.

5.5 Soundness and Precision

LiTeERSAN’s Rust-specific static analysis is sound in identifying both
spatially and temporally risky pointers. It begins with a conser-
vative reachability analysis (§5.1) that includes all functions that
may execute at runtime, ensuring all risky pointers that can trigger
memory errors at runtime are within the analysis scope.

To identify spatially risky pointers, LITERSAN begins by conser-
vatively annotating all instructions involving raw pointers. This
over-approximation ensures that all raw pointers are initially cap-
tured. The subsequent analysis prunes false positives by leveraging
the fact that exposed raw pointers that bypass Rust’s safety guaran-
tees can only be used within unsafe code. Thus, LITERSAN excludes
encapsulated raw pointers that cannot be directly accessed and are
protected by Rust memory safety rules. This pruning maintains

Algorithm 1: Inter Procedural Taint Propagation

Input: F — set of functions; R — set of initially tainted raw pointers
Output: TaintedSets — mapping from each taint source to its tainted pointers
1 function InterProcTaintPropagation(F, R)

2 Initialize TaintedSets to map each r € Rto {r}

3 Initialize WorkList < 0

4 for each unresolved pointer derivation D in F do

5 (sre,dst) « ExtractSourceAndDestination(D)

6 Add D to WorkList

7 if src is tainted then

8 | Add dst to the same tainted set as src

9 else if dst is tainted and no ownership transfer in D then
10 Add src to the same tainted set as dst
1 for each tainted pointer t in TaintedSets do

12 Initialize Visited < 0

13 Initialize Stack «— {t¢}

14 while Stack is not empty do

15 p < pop an element from Stack

16 if p ¢ Visited then

17 Add p to Visited

18 for each unresolved pointer derivation D in WorkList do
19 (sre,dst) «—

ExtractSourceAndDestination(D)

20 if src = p then

21 Add dst to the same tainted set as ¢
22 ‘ Push dst onto Stack

23 else if dst = p and no ownership transfer in D then
24 Add src to the same tainted set as ¢
25 ‘ Push src onto Stack
26 | return TaintedSets

soundness while improving precision. Additionally, LITERSAN iden-
tifies and handles each unsafe API individually, based on a thorough
review of the Rust standard library.

For temporally risky pointers, LITERSAN employs a lifetime-
aware taint analysis. Soundness in identifying such pointers is en-
sured by three key elements. First, the taint and pointer-derivation
analyses described above are sufficient to capture all potential may-
alias relationships in this context, as Rust’s ownership and borrow-
ing rules ensure that aliasing can only occur through explicit and
syntactically visible pointer derivations [19]. Second, this guarantee
naturally extends to loops because the LLVM IR contains a fixed
and finite set of pointer derivation instructions. LITERSAN tracks
each such instruction within a loop, analyzing only static derivation
relationships rather than mutable program states (e.g., ranges, off-
sets, or sizes). As a result, every pointer along the derivation chain
that may reference the same object as the taint source is captured,
regardless of the complexity of the loop body or control flow. Third,
LiTERSAN employs a type-based analysis to conservatively resolve
indirect calls, ensuring that all relevant pointer derivations are in-
cluded. Together, these three elements guarantee that LITERSAN
marks all valid alias pointers as temporally risky.

While the analysis is sound by design, potential false negatives
may arise in practice due to implementation limitations, such as
compiler optimizations or missing IR from dynamically linked code.
The approach may also introduce some over-approximation, for
example, by analyzing derivations that never occur during actual
execution. However, this imprecision is significantly reduced com-
pared to prior work [8, 38] relying on traditional points-to analysis,
which is unaware of pointer lifetimes. In contrast, LITERSAN ex-
cludes pointers that are invalid at the time of exposed raw pointer

creation or not derived from tainted sources, as these are protected
by Rust’s compile-time safety guarantees and are not susceptible
to temporal memory safety violations.

6 LIGHTWEIGHT RUNTIME CHECKS

In this section, we present the lightweight runtime checks of LITER-
SAN. LITERSAN uses compact memory safety metadata in place of
red zones and shadow memory to address Challenge C2 and adopts
a selective instrumentation strategy to address Challenge C3 (see
§3.2). We describe the metadata structures in §6.1 and the metadata
inference approach in §6.2. §6.3 details our selective instrumenta-
tion strategy, and §6.4 explains how the instrumented checks uses
memory safety metadata to perform runtime validation.

6.1 Metadata Structure

For each risky pointer, LITERSAN maintains spatial metadata for
spatially risky pointers and temporal metadata for temporally risky
pointers. This metadata is inferred during static analysis, propa-
gated at runtime through instrumentation, and stored in dedicated
data structures rather than embedded directly in the pointer repre-
sentation (e.g., fat pointers). At runtime, the metadata is dynami-
cally updated and used to detect memory safety violations.

Spatial metadata. For spatially risky pointers, LITERSAN tracks
three key attributes that are necessary and sufficient to enforce
spatial memory safety in Rust:

e Capacity: the maximum number of elements allowed in a ref-
erenced memory object. For pointers referencing scalar-type
objects (e.g., integers), the capacity is set to 1.

e Initialized length: the number of elements that have been ini-
tialized within a referenced memory region.

o Offset: the index within an object that the pointer references.
L1TERSAN maintains a map from each spatially risky pointer to its

spatial metadata, which consists of the attributes listed above; this

metadata map is stored separately from the pointers themselves.

Temporal metadata. For temporally risky pointers, LITERSAN

tracks the following information as temporal metadata:

e May-alias relationships: pointers that may reference the same
memory object are grouped to represent their potential aliasing.

e Ownership: the owner(s) of the referenced objects.

LITERSAN uses taint source raw pointers to link associate
temporally risky pointers with their temporal metadata via two
maps: a reverse map that links each temporally risky pointer back
to its originating taint source, and a forward map that links each
taint source to the corresponding metadata which it shares with
its tainted pointers. This dual-mapping design avoids redundant
metadata storage for multiple pointers derived from the same source
while accurately associating each temporally risky pointer with its
temporal metadata.

To record may-alias relationships, LITERSAN groups all tempo-
rally risky pointers that may reference the same memory object into
a pointer set. This pointer set integrates with LITERSAN’s taint anal-
ysis, as may-alias pointers identified by LITERSAN share a common
taint source and can be grouped during taint analysis without addi-
tional effort. When an exposed raw pointer is derived from another,

their pointer sets are merged to ensure a complete representation
of may-alias relationships.

Ownership is a critical component of temporal metadata, as the
owners are the pointers responsible for deallocating the referenced
objects. As a result, owners must be tracked at runtime to update
the temporal state (i.e., dangling or valid) of all pointers in the same
pointer set. To record the owners, LITERSAN maintains a dedicated
owner set, which is a subset of the pointer set.

6.2 Metadata Inference

Metadata inference is performed during static analysis. LITERSAN
infers each risky pointer’s memory safety metadata at its definition
site and instruments the code to receive and maintain the inferred
metadata, enabling runtime validation.

Spatial metadata inference. To infer spatial metadata for spa-
tially risky pointers, LITERSAN analyzes each spatially risky
pointer’s definition site and, if necessary, traces pointer derivations
back to the allocation site of the memory object, where the spatial
metadata is defined. Specifically, LITERSAN backtracks along the
pointer-derivation chain to locate the corresponding root pointer,
which is the first pointer that references the memory object. LITER-
SAN then extracts spatial metadata from the root pointer’s definition
site, where the memory allocation appears as an operand. Depend-
ing on how the memory region is referenced, metadata extraction
falls into two distinct cases:

o In the direct case, the root pointer references a memory object
whose spatial metadata can be directly extracted. This occurs
when the referenced object is a basic container provided by the
Rust standard library, such as vectors (Vec<T>) and arrays ([T;
NJ), which manage contiguous memory regions. In this case,
L1TERSAN directly obtains spatial metadata from the container’s
fields. For example, the length and capacity fields in Vec<T>
directly provide Initialized Length and Capacity (§6.1).

o In the indirect case, the root pointer refers to a memory object
indirectly via abstractions such as Box<T> or Rc<T>, which do
not explicitly carry spatial metadata. In this case, LITERSAN back-
tracks to the definition site of the underlying T-typed object to
infer and extract spatial metadata.

Additionally, when the definition site of any exposed raw pointer
involves pointer arithmetic, LITERSAN computes the resultant Off-
set. Another category of spatially risky pointers, smart pointers
associated with unsafe APIs, is relatively uncommon. Thus, LITER-
San handles these cases individually, applying sanitizer checks
based on the semantics of each unsafe API, as discussed in §5.3.

Once spatial metadata is extracted from a root pointer, it is trans-
mitted to the spatially risky pointers along the pointer-derivation
chain. The root pointer, along with the intermediate pointers on
this chain, is referred to as metadata-carrying pointers. Note that
metadata-carrying pointers are not necessarily risky themselves
but are tracked to enable accurate metadata propagation.

To enable runtime checking, LITERSAN propagates statically
inferred spatial metadata to spatially risky pointers through inserted
instrumentation. This process involves two cases. First, if the risky
pointer is a root pointer, the metadata is available at its definition
site; therefore, instrumenting its definition site suffices. Second,
if the risky pointer is a derived pointer, metadata must be passed

along the derivation chain. In this case, LITERSAN instruments the
definition sites of all metadata-carrying pointers along the chain to
ensure proper metadata propagation to the derived pointer.

Temporal metadata inference. For temporal metadata, the may-
alias relationships and the taint-source raw pointers are inferred
during the identification of temporally risky pointers, through
lifetime-aware taint analysis, as described in §5.4. The owner(s)
of the referenced memory objects are inferred by analyzing the
definition site of each tainted pointer based on Rust’s ownership
model. Specifically, owners are smart pointer types (e.g., Box and
Rc) that manage the lifetime of a memory object and are responsible
for its deallocation. LITERSAN detects owners by analyzing pointer
types and determining whether they are associated with memory
deallocation, typically indicated by their Drop implementation [59].

Robustness and completeness guarantee. LITERSAN adopts a
hybrid strategy to infer spatial and temporal metadata, ensuring
that metadata is accurately and reliably extracted.

Spatial metadata is inferred for (i) exposed raw pointers and
(ii) smart pointers associated with unsafe APIs. For exposed raw
pointers, LITERSAN extracts initial metadata from referenced ob-
jects via static analysis and passes it to runtime functions through
instrumentation. This method is robust because Rust’s ownership
and borrowing rules guarantee aliasing occurs only through ex-
plicit, visible derivations [19], making metadata fully traceable. It is
also complete since static analysis extracts only initial metadata,
while runtime instrumentation ensures precise, immediate updates.
During execution, root pointers are initialized before derived point-
ers, enabling accurate metadata transmission and preventing stale
values. For smart pointers associated with unsafe APIs, LITERSAN
addresses each case individually based on its semantics. The small
number of such APIs, combined with tailored handling, ensures
robustness and completeness.

Temporal metadata consists of (i) may-alias relationships and (ii)
object owners. May-alias relationships are inferred through lifetime-
aware taint analysis, proven sound in §5.5. Owners are identified
based on pointer types and Drop usage, following Rust’s ownership
rules. As both types and Drop usage are statically deterministic,
this approach guarantees both completeness and robustness.

6.3 Selective Instrumentation

LITERSAN performs selective instrumentation by applying only
the runtime checks necessary to each identified risky pointer. To
support these checks, it also instruments the program to propagate
statically inferred metadata and manage it at runtime. This section
introduces the five classes of instrumentation used in LITERSAN
and how they are selectively applied according to the risky pointer
types and program context.

Instrumentation types. LITERSAN defines five instrumentation
classes (I1-15) to initialize and update metadata during execution,
and perform runtime memory safety checks based on the metadata.
e I1: Pointer activation (metadata initialization).

o I2: Spatial metadata update.

e I3: Pointer deactivation (temporal metadata update).

e I4: Spatial safety checks.

o I5: Temporal safety checks.

I1 type. I1 instrumentation is inserted at the definition sites of
identified spatially and temporally risky pointers, and metadata-
carrying pointers (including root pointers). It receives statically
inferred metadata and marks each pointer as active when being
triggered at runtime, by registering the pointer with its associated
spatial or temporal metadata.

For spatially risky pointers and their derivation sources (i.e., root
and metadata-carrying pointers), I1 establishes a runtime mapping
between each pointer and its spatial metadata. Root pointers are
initialized with metadata directly from static analysis, while derived
pointers inherit metadata from their source pointer. For temporally
risky pointers, I1 maintains a mapping from each taint-source raw
pointer to associated temporal metadata and a reverse mapping
from each tainted pointer to its taint source, as discussed in §6.1.
Depending on whether the definition site corresponds to a taint
source or a tainted pointer, I1 creates or updates these mappings.

12 type. LITERSAN employs I2 to update spatial metadata at run-
time in two scenarios: (1) when the offset of a spatially risky pointer
or metadata-carrying pointer is modified (e.g., through pointer arith-
metic), and (2) when the underlying memory object is modified
(e.g., through container operations, such as push() and pop()).
For (1), I2 updates the Offset field in its associated spatial meta-
data. For (2), 12 updates and synchronizes the Initialized length
and/or Capacity field(s) for both the pointer performing the modifi-
cation and all preceding pointers in the derivation chain. This is
because those pointers all reference the same memory object.

I3 type. I3 instrumentation is inserted at deallocation sites, in-
cluding function returns for stack-allocated objects and explicit
drop operations for heap-allocated objects, to deactivate invali-
dated pointers. If an owner deallocates the memory object, or if
the last owner is invalidated (e.g., via mem: : forget()), I3 queries
the reverse map to identify the taint-source raw pointer and up-
dates corresponding spatial metadata, marking the taint-source raw
pointer along with all pointers in its pointer set as dangling.

I4 and I5 types. LITERSAN applies I4 at pointer arithmetic and
dereference sites of spatially risky pointers, and I5 at dereference
and deallocation sites of temporally risky pointers, to detect spatial
and temporal memory safety violations, respectively. The detection
mechanisms for 14 and I5 are detailed in §6.4.

Instrumentation strategy. LITERSAN employs a selective instru-
mentation strategy that inserts only the necessary code at each
instrumentation site. This approach ensures that metadata remains
up-to-date and that memory safety violations are detected effi-
ciently. Table 1 summarizes the instrumentation strategy.

For all three pointer types, LITERSAN inserts I1 at their definition
sites to register the pointers along with their associated spatial
or temporal metadata at runtime, making them activated. This
metadata is later used to initialize derived pointers or to validate
memory safety at runtime.

For spatially risky pointers, which may cause spatial memory
safety violations, LITERSAN selectively inserts I2 and I4. 12 is placed
at pointer arithmetic operations (e.g., add(), of fset()) and at con-
tainer modifier operations (e.g., unsafe API set_len()) to update
spatial metadata instantly at runtime, enabling 14 to precisely per-
form spatial memory safety validation. I4 is inserted at pointer

Pointer Container

Pointer Type Definition Dereference Arithmetic Modifier Deallocation
Spatially Risky n 14 12,14 12

Pointers

Ter_nporally Risky n 5 R I5. I3
Pointers

Me_tadata-Carrymg n B 2 Iz R
Pointers

Table 1: Selective instrumentation strategy. Each class of instrumen-
tation is applied based on the type of pointer and the type of operation,
ensuring that only the necessary code is inserted at each instrumentation
site. At the pointer arithmetic of a spatially risky pointer, 12 is before I4. At
the deallocation site of a temporally risky pointer, I5 is before I3.

arithmetic and dereference sites to detect spatial violations using
the maintained spatial metadata. Importantly, 12 is placed before
14 at pointer arithmetic sites, ensuring that any invalid pointer
arithmetic is detected immediately using the up-to-date metadata.

For temporally risky pointers, which can result in temporal mem-
ory safety violations, LITERSAN selectively applies I3 and I5. I3
is inserted at deallocation sites (e.g., drop()) to update temporal
metadata, ensuring that the temporal validity state of each pointer
is accurately maintained. I5 is applied at dereference and deallo-
cation sites to detect temporal errors, such as use-after-free and
double-free. At deallocation sites, I5 is placed before I3 to prevent
I3 from prematurely marking the pointer as invalid and causing
erroneous double-free reports.

For metadata-carrying pointers, which serve only to transmit spa-
tial metadata (see §6.2), LITERSAN selectively applies 12 at pointer
arithmetics and container modifiers (e.g., Vec: : push()), ensuring
that spatial metadata is instantly updated and accurately propa-
gated to spatially risky pointers.

6.4 Runtime Check

LITERSAN maintains and updates memory safety metadata through
11-13, and leverages this metadata at runtime to detect spatial and
temporal violations via I4 and I5, respectively. Figure 1 (see §3.1)
summarizes the complete set of memory errors that LITERSAN
detects and illustrates how I4 and I5 perform runtime checks.

For all risky pointers, LITERSAN first performs null checks at
dereferences. For spatially risky pointers, 14 compares the pointer’s
Offset against its Initialized Length and Capacity. An access is
alarmed as a use-before-initialization if the offset exceeds the initial-
ized length, or as an out-of-bounds access if it exceeds the capacity.
For temporally risky pointers, I5 consults the temporal metadata
maintained by I3 to determine whether the pointer is dangling. A
dereference of a dangling pointer triggers a use-after-free alarm,
while a deallocation of a dangling pointer raises a double-free alarm.

Benefits of our strategy. The benefits of LITERSAN are to im-
pose lower runtime and memory overhead while providing more
comprehensive detection coverage in comparison with ASan-based
approaches [8, 38]. Specifically, LITERSAN selectively instruments
only the pointers that may potentially violate memory safety and
inserts only necessary checks for them. These pointers are only a
subset of the pointers that existing ASan-based techniques [8, 38]
check. Moreover, LITERSAN can detect memory safety bugs that

existing ASan-based approaches may miss by maintaining the fine-
grained spatial and temporal metadata. This metadata is compact
and lightweight, contributing further to runtime efficiency.

7 IMPLEMENTATION

We implement LITERSAN on top of LLVM-14. It takes the program’s
LLVM bitcode as an input, performs static analysis, applies selective
instrumentation, and generates instrumented LLVM bitcode.

The input bitcode is generated from Rust programs using a
customized version of rustc-1.64-nightly. This compiler is ex-
tended to support metadata annotation during the MIR-to-LLVM IR
lowering phase. Following ERASan’s [38] annotation mechanism,
we modify the codegen-11vm and codegen-ssa to insert LLVM
metadata on instructions involving raw pointers. These annotations
enable LITERSAN to identify raw pointers during static analysis, as
described in §5.3. On the other hand, the output bitcode includes
inserted calls to runtime functions (i.e., I1-I5 in §6.3). At runtime,
the instrumented code is invoked to update metadata instantly and
detect memory safety violations as the program executes.

8 EVALUATION

We evaluate LITERSAN in comparison with the two state-of-the-art
Rust sanitizers, ERASan [38] and RustSan [8], as follows: runtime
overhead (§8.1), memory overhead (§8.2), compilation overhead
(§8.3), and bug detection capability (§8.4).

Experiment setup. All experiments were conducted on a server
with an Intel Xeon Gold 6230 CPU, 80 cores, and 754 GB RAM,
running Ubuntu 24.04. The benchmarks are first compiled to un-
optimized LLVM IR, allowing LITERSAN and comparison tools to
analyze program semantics and insert instrumentation before opti-
mizations may alter or remove metadata. Each inserted check is tied
to its corresponding memory operation and realized as a runtime
function call, ensuring that subsequent LLVM optimizations do not
eliminate it. The instrumented IR is then compiled with the default
-03 pipeline, reflecting realistic deployment conditions. This stag-
ing preserves analysis precision while ensuring that performance
measurements correspond to practical compilation, runtime, and
memory costs (further explained in Appendix E).

Benchmarks. We evaluated LITERSAN on 28 benchmarks: 26 most
frequently downloaded Rust crates from crates.io® and two real-
world applications (servo and ripgrep). For each benchmark, we
compile and execute both the baseline versions (without instrumen-
tation) and the instrumented versions produced by each sanitizer
20 times. The average compilation time, execution time, and mem-
ory usage are used to compute the respective overheads. For the
benchmarks shared with ERASan, we use its experiment setup [23].
Thus, we use the same test cases to ensure a fair comparison. For
the remaining benchmarks, we use their native test suites.

Ablation study. To decompose LITERSAN’s overhead, we devel-
oped a variant SEMI-LITERSAN, which uses LITERSAN’s static anal-
ysis to identify risky pointers and selectively instruments runtime

3crates. io is Rust’s official package registry. Each crate is implemented entirely
in Rust and compiled as an independent unit, functioning as either a library or an
executable given the benchmark input.

checks, but employs ASan’s runtime checking instead of LITER-
SAN’s metadata-based approach. Comparing SEMI-LITERSANwith
LITERSAN isolates the benefit of lightweight metadata while com-
paring SEMI-LITERSAN with RustSan and ERASan highlights the
benefit of our precise risky pointer identification, as RustSan and
ERASan use ASan’s runtime checking mechanism.

8.1 Runtime Overhead

The Runtime Overhead columns in Table 2 show the runtime
overhead introduced by LITERSAN, ERASan, and RustSan. Across
all benchmarks, LITERSAN consistently exhibits the lowest runtime
overhead. By geometric mean, LITERSAN incurs a runtime overhead
of only 18.84%, significantly lower than ERASan’s 152.05% and
RustSan’s 183.50%, presenting reductions of 87.61% and 89.73%,
respectively.

L1TERSAN achieves significantly lower runtime overhead for two
reasons. First, it uses lifetime-aware taint analysis to precisely iden-
tify risky pointers, greatly reducing unnecessary instrumentation.
In contrast, comparison tools rely on points-to analysis, conserva-
tively treating all aliases of pointers in unsafe regions (RustSan)
or raw pointers (ERASan) as risky, resulting in redundant instru-
mentation for pointers whose safety is already guaranteed by the
Rust compiler. As shown in the Pointer Count columns of Table 2,
LITERSAN identifies greatly fewer risky pointers than the aliased
counts. Second, LITERSAN employs the lightweight metadata-based
runtime mechanism in place of the heavyweight ASan checks.

To quantify the contributions of these two components discussed
above, we conduct an ablation study using SEMI-LITERSAN, a vari-
ant of LITERSAN introduced earlier in this section. SEMI-LITERSAN
incurs 70.04% runtime overhead by geometric mean, demonstrat-
ing that the use of our metadata-based checking mechanism in
L1TERSAN reduces overhead by 73.10%. Compared to ERASan and
RustSan, SEMI-LITERSAN achieves reductions of 53.94% and 61.83%,
highlighting the benefit of Rust-specific static analysis. We show
the detailed results in Table 5 in Appendix C.

8.2 Memory Overhead

We measured memory overhead using the Linux time com-
mand [30], which reports the peak resident set size (max RSS) of
the process. This metric captures the maximum amount of mem-
ory consumption during execution, which is widely adopted as a
realistic measure of memory overhead.

In terms of memory usage, LITERSAN demonstrates a substantial
advantage over both comparison tools. As shown in the Memory
Overhead columns of Table 2, LITERSAN introduces trivial memory
overhead across all benchmarks, with a geometric mean of only
0.81%. In contrast, ERASan and RustSan incur significantly higher
memory overhead, reaching 739.27% and 861.98%, respectively.

These results highlight the contribution of LITERSAN’s light-
weight metadata, which eliminates the substantial memory over-
head imposed by shadow memory and red zone mechanisms in
ASan-based tools. Specifically, by comparing LITERSAN with SEmI-
LITERSAN (443.90% memory overhead), we can observe a 99.82%
reduction attributed to the metadata-based runtime checking mech-
anism. Additionally, reduced instrumentation also contributes to
memory savings. SEMI-LITERSAN achieves 39.95% and 48.50% lower

Benchmark LOC Pointer Count Compilation Overhead (%) Runtime Overhead (%) Memory Overhead (%)
Expo-raw Risky Aliased | LITERSAN ERASan RustSan | LiITERSAN ERASan RustSan | LITERSAN ERASan RustSan
base64 7,025 1,787 14,320 131,242 174.17 SE 6,260.03 35.21 - 431.28 3.56 - 5,271.84
byteorder 3,411 95 355 5,391 66.52 614.35 674.93 1.72 53.36 76.37 0.03 357.73 406.27
bytes(buf) 5,867 88 376 2,904 47.94 636.77 748.59 28.39 137.90 154.33 2.68 86.27 98.58
bytes(bytes) 5,867 91 411 2,089 45.25 625.32 682.33 25.57 166.97 169.62 2.15 2,218.86 2,143.63
bytes(mut) 5,867 102 484 2,267 46.19 627.09 755.26 27.82 157.28 165.48 2.19 5,376.09 5,339.28
indexmap 8,693 386 2,214 32,132 103.59 5,807.79 2,310.17 23.06 287.14 293.65 1.78 1,754.14 2,090.46
itoa 613 9 32 291 47.76 334.31 414.24 20.34 116.11 131.05 143 65.71 69.83
memchr 1,139 50 185 3,133 86.14 514.86 560.28 13.18 212.39 217.74 1.96 49.61 61.56
num-integer 2,383 570 3,095 8,449 186.57 1,359.64 1,512.04 1.17 5.59 8.34 0.02 524.07 674.62
ryu 3,443 17 82 2,247 64.03 868.87 931.11 17.71 63.80 70.89 0.28 81.69 85.22
semver 2,483 24 81 839 42.34 390.24 451.72 4.83 317.21 388.52 1.88 6,832.92 7,683.53
smallvec 2,912 59 278 982 59.21 422.05 489.63 13.34 134.53 152.33 1.14 4,370.14 4,518.99
strsim-rs 1,102 109 431 1,015 58.25 452.52 528.97 1.06 380.51 389.72 1.36 5,568.87 5,729.60
uuid(format) 4,971 15 50 62,149 207.82 9,230.63 2,669.96 40.62 362.41 411.04 0.15 875.22 879.71
uuid(parse) 4,971 15 50 62,091 202.32 9,038.49 2,684.37 37.31 338.06 402.53 0.15 1,065.03 1,094.13
bat 53,517 2,567 25,546 138,726 167.91 25,020.17 4,826.05 321.11 894.97 931.36 4.96 4,619.51 5,017.39
crossbeam-utils 31,246 64 290 2,227 104.06 586.35 639.52 1.28 116.09 136.17 0.05 57.85 58.97
hashbrown 10,384 51 383 6,596 72.16 1,227.80 1,182.08 9.32 58.65 69.45 0.37 6,613.42 6,814.56
hyper 20,952 1,824 15,201 114,269 184.98 20,920.41 5,127.40 43.57 278.16 297.23 3.69 2,681.30 2,966.32
rand(generators) 15,220 27 78 2,619 84.27 776.41 835.54 31.85 26.49 31.64 0.26 85.18 88.64
rand(misc) 15,220 66 258 2,527 95.93 1,079.36 866.17 7.94 10.12 23.47 0.22 1,457.08 1,654.97
regex 65,417 294 3,896 6,383 128.70 1,463.51 923.09 38.54 831.87 867.34 1.83 8,191.68 8,574.25
ripgrep 33,226 1,864 18,734 - 142.07 SEGV SEGV 304.03 - - 4.71 - -
syn 58,884 1,088 23,034 186,730 123.84 25,397.17 1,499.46 72.29 583.25 618.92 1.65 327.11 343.74
tokio 69,875 1,482 19,375 74,697 149.02 18,607.29 4,965.73 53.35 563.24 593.22 1.33 1,343.17 1,504.36
unicode 172,875 95 363 1,054 54.95 549.73 677.47 8.89 47.96 62.37 0.86 56.83 63.38
url 40,595 353 2,266 34,368 191.89 1,618.63 1,521.94 21.06 612.75 686.41 1.37 312.35 356.88
servo 11.26 M 127M 1463 M - 186.13 TO TO 86.58 - - 2.82 - -
GeoMean - - - - 97.21 1,63535 1,193.31 | 18.84 152.05 183.50 | 0.81 739.27 861.98

Table 2: Pointer counts and overhead comparison. Benchmarks are grouped by scale. Pointer counts report exposed raw pointers (Expo-raw) and risky
pointers identified by LITERSAN, along with raw pointers plus aliases (Aliased) identified by traditional points-to analysis. Overheads are shown for LITERSAN,
ERASan, and RustSan. Nonapplicable results are listed as -. SE indicates silent exit, SEGV indicates segmentation fault, and TO indicates a compilation timeout.

memory overhead than ERASan and RustSan, respectively. We
describe their details in Table 5 in Appendix C.

8.3 Compilation Overhead

Compilation overhead refers to the additional compilation time
introduced by a sanitizer’s static analysis and instrumentation com-
pared to the baseline build. As shown in the Compilation Over-
head columns in Table 2, LITERSAN consistently incurs significantly
lower overhead. By geometric mean, LITERSAN produces 97.21%
overhead, compared to 1,635.35% for ERASan and 1,193.31% for
RustSan, presenting reductions of 94.06% and 91.85%, respectively.
Both comparison tools failed to complete compilation for servo
within a 24-hour timeout, and encountered a segmentation fault
when analyzing ripgrep due to SVF errors.

LITERSAN achieves lower compilation overhead than RustSan
and ERASan because both of them rely on SVF, which is a heavy-
weight points-to analyzer, as discussed in §2.2. In contrast, LITER-
San adopts a lightweight static analysis tailored to Rust. Despite
its low cost, this analysis is sufficient to identify all spatially and
temporally risky pointers, enabling selective instrumentation with
modest compilation overhead.

8.4 Security Evaluation

In addition to performance improvement, LITERSAN provides
a more comprehensive memory error detection coverage than
ERASan and RustSan, both of which share the same capability
as ASan. Therefore, we show the bug detection capability of LITER-
SAN and compare it only with ASan (whose detailed approach and
limitations are discussed in §2.3).

We analyzed bugs reported by RustSec—the Rust Security Ad-
visory Database [77]—over the past two years, focusing on the
cases where bug root causes (i.e., PoCs) are publicly available for
validation. We list memory safety bugs in our scope (discussed
in §3.1) in Table 3. LITERSAN successfully detects all of 20 bugs,
whereas ASan fails to identify two out-of-bounds access bugs, one
use-before-initialization bug, and one use-after-free bug. These
cases occur in Rust-specific contexts (illustrated as case studies in
§8.4.1 and §8.4.2). Because ASan was originally designed for C/C++,
it effectively detects conventional memory safety violations but
lacks the ability to handle Rust-specific memory safety rules and
check per-pointer spatial and temporal memory safety. In contrast,
LITERSAN incorporates Rust’s memory safety rules in its static anal-
ysis and enforces per-pointer spatial and temporal memory safety
checks, enabling the detection of such missing bugs. We illustrate
one spatial memory safety bug in §8.4.1 and one temporal memory
safety bug in §8.4.2.

8.4.1 Case Study 1. RUSTSEC-2023-0056 [63] is an out-of-
bounds access vulnerability in the vm-memory crate [52]. In this
crate, get_slice is a trait method intended to return a smart
pointer-like abstraction, VolatileSlice, over a slice, but it lacks
a default implementation. If a user implements this method incor-
rectly, for example, by miscomputing the offset or count, the
internal pointer in the returned VolatileSlice may reference
memory outside the intended region, potentially leading to out-of-
bounds access.

Several methods in VolatileMemory trait, such as get_ref and
get_array_ref, invoke get_slice without proper bounds check-
ing, thereby raising potential memory safety violations. Listing 2

RUSTSEC ID Type Class ASan LITERSAN
RUSTSEC-2023-0021 NPD Null-pointer deref 4 4
RUSTSEC-2023-0024 NPD Null-pointer deref v v
RUSTSEC-2023-0038 OOB Spatial 4 4
RUSTSEC-2023-0039 OOB Spatial v v
RUSTSEC-2023-0056 ~ OOB Spatial X v
RUSTSEC-2024-0002 OOB Spatial X v
RUSTSEC-2025-0003 OOB Spatial v v
RUSTSEC-2025-0005 OOB Spatial v 4
RUSTSEC-2025-0018 OOB Spatial v v
RUSTSEC-2023-0045 UBI Spatial 4 4
RUSTSEC-2023-0087 UBI Spatial X v
RUSTSEC-2024-0018 UBI Spatial v 4
RUSTSEC-2024-0374 UBI Spatial v 4
RUSTSEC-2024-0400 UBI Spatial v v
RUSTSEC-2023-0010 DF Temporal v v
RUSTSEC-2023-0078 UAF Temporal X v
RUSTSEC-2024-0007 UAF Temporal v 4
RUSTSEC-2024-0017 UAF Temporal v v
RUSTSEC-2025-0016 ~ UAF Temporal 4 4
RUSTSEC-2025-0022 UAF Temporal v v

Table 3: Bug detection capability of ASan and LiTERSAN. Listed are
the 20 most recent memory safety vulnerabilities in RustSec, grouped by bug
class. Additional results on older vulnerabilities are provided in Appendix A.

illustrates this issue using get_atomic_ref as an example. In line
6, get_slice is invoked to wrap an allocated memory region with
a requested size of size_of: :<T>() bytes. In line 9, the internal
pointer of the returned VolatileSlice (i.e., slice.addr) is cast
and dereferenced without verifying whether the underlying mem-
ory actually aligns with the requested bounds. If get_slice returns
a region smaller than the requested region, any dereference beyond
the actual region results in an out-of-bounds access.

1 fn get_slice(&self, offset: usize, count: usize)
2 -> Result<VolatileSlice<BS<Self::B>>>;

+ fn get_atomic_ref<T: AtomicInteger>(&self, offset: usize)

5 -> Result<&T> {

6 let slice = self.get_slice(offset, size_of::<T>())?;
slice.check_alignment(align_of::<T>())?;

9 unsafe { Ok(&x(slice.addr as *const T)) }

Listing 2: Potential OOB in get_atomic_ref.

According to our experiment, ASan cannot detect this bug be-
cause it only places red zones around memory objects. However, in
this case, the pointer returned by get_slice may point to a valid
memory object, but beyond the actual valid bound, which is within
this object. As a result, invalid accesses beyond the actual bound
but within the larger allocated object remain undetected by ASan,
since no red zones are placed at the logical boundary returned by
get_slice. In contrast, LITERSAN tracks memory safety metadata
for each pointer at its definition site. This allows LITERSAN to pre-
cisely extract the actual bound of slice.addr and perform spatial
memory safety checks, detecting potential out-of-bounds access.

8.4.2 Case Study 2. RUSTSEC-2023-0078 [64] is a use-after-
free vulnerability reported in the tracing crate [51]. As shown
in Listing 3, the vulnerability originates from the improper use of
mem: : forget in line 4, where the exclusive owner of the underly-
ing memory object is forgotten. While mem: : forget prevents the
object’s destructor from being called, the Rust compiler considers
the object to be logically invalid after its owner is forgotten. The

memory region may subsequently be reused by the compiler, mak-
ing any future access to the original object via existing pointers a
use-after-free violation.

1 pub fn into_inner(self) -> T {
) let span: *const Span = &self.span;
3 let inner: xconst ManuallyDrop<T> = &self.inner;
4 mem: : forget(self);
let _span = unsafe { span.read() };
let inner = unsafe { inner.read() };
8 ManuallyDrop::into_inner(inner)
93
Listing 3: Potential UAF in Instrumented: :into_inner.

This vulnerability stems from a violation of Rust’s ownership
model rather than traditional heap misuse found in C/C++. Because
the memory is never explicitly freed, ASan does not update its
shadow memory to mark the region as invalid, thus fails to detect
the temporal safety violations. Covering this type of vulnerability
in ASan is fundamentally challenging as ASan is unaware of Rust’s
ownership semantics. To detect such bugs, ASan would need to
determine whether an object still has a valid owner at every pro-
gram point, which requires a significant change in the underlying
design of ASan. In contrast, LITERSAN is designed with ownership
awareness. It tracks ownership and marks the pointers referencing
the same object as dangling when the last owner is dropped. Any
subsequent dereferences of the dangling pointers are flagged as
use-after-free. This allows LITERSAN to detect ownership-related
memory safety violations that lie beyond ASan’s capabilities.

9 DISCUSSION

Type conversion bugs. We consider type conversion bugs, such
as those introduced via unsafe APIs like transmute() [54], out of
scope, as it is widely accepted as orthogonal to spatial and temporal
memory safety. The same view is shared by many prior works [7,
14, 47]. Type conversion bugs stem from reinterpreting one type as
another, which can break safety invariants without violating spatial
bounds or temporal validity. As a result, LITERSAN may not be able
to detect them if they do not violate spatial bounds or temporal
validity. State-of-the-art ASan-based tools [8, 38] also share the
same problem [67]. One way to address this problem is to integrate
type confusion bug detection techniques [7]. But it is worth noting
that LITERSAN is able to detect such type confusion bugs if they
stem from memory errors such as UAF.

Cross-language attacks. LITERSAN leverages Rust’s ownership
and borrowing semantics to infer memory safety metadata and
enforce spatial and temporal safety. As a result, it does not guar-
antee the detection of memory safety violations originating from
external code written in languages without such semantics, such as
C/C++ libraries interfaced via FFIL. Similar to ERASan and RustSan,
L1TERSAN does not cover cross-language memory safety violations,
which are considered out of scope.

To address cross-language attacks, one potential direction is
to integrate LITERSAN with existing isolation or sandboxing tech-
niques [68, 71], to mitigate memory errors originating from external

code. Another direction is to extend the scope of LITERSAN to ex-
ternal libraries and enforce runtime checks at FFI boundaries. How-
ever, this requires a deep understanding of the semantics of each
external AP, which is difficult to generalize and automate. It also
requires static analysis on C/C++ code, which lacks Rust’s safety
guarantees, making Rust-specific analysis inapplicable. Despite
these challenges, exploring support for cross-language memory
safety is a promising direction for future work.

10 RELATED WORK

Memory sanitizing. LITERSAN is closely related to ERASan [38]
and RustSan [8], both of which are ASan-based [65] tools that detect
memory safety errors at runtime. These tools rely on SVF [69] to
identify pointers aliases with raw pointers [38] or used in unsafe
code [8]. They retain ASan checks only for these potentially unsafe
pointers to improve performance compared to ASan. Both tools
provide the same memory safety guarantee as ASan.

In contrast, LITERSAN offers more comprehensive safety guaran-
tees while incuring drastically lower runtime and memory overhead
than ERASan and RustSan. Additionally, LITERSAN’s compile time
significantly outperforms that of ERASan and RustSan (§8), due
to precise risky pointer identification for less instrumentation and
lightweight runtime checks. SVF, in contrast, computes complete
alias information for the whole program, thus, is computationally
expensive and unscalable for large programs [21], resulting in high
overhead in its client, such as ERASan and RustSan.

Memory isolation. Another major line of mitigations against
unsafe code—including both unsafe Rust source code and exter-
nal C/C++ libraries—is memory isolation for protecting safe Rust
memory. Both XRust [31] and Trust [5] utilize SVF [69] to identify
pointer dereferences of memory used by unsafe Rust code. XRust
employs bounds checking, while Trust leverages Intel MPK [18] to
enforce isolation between memory exclusively accessed by safe Rust
code and memory accessed by unsafe code. Similarly, MetaSafe [20]
protects smart pointer metadata (e.g., length of String) by storing
them in a dedicated memory region and isolating that region us-
ing Intel MPK. PKRU-Safe [21] performs dynamic analysis to find
unsafe memory accesses, motivated by concerns over SVF’s perfor-
mance, and also enforces isolation via Intel MPK. Sandcrust [24]
restricts external C library code by running it in a separate pro-
cess. Fidelius Charm [1] migrates target sensitive data to and from
protected pages before and after invoking untrusted C libraries.

They intend to mitigate the impact of unsafe code but allow
memory errors within it. In addition to preventing unsafe Rust code
from affecting safe code, LITERSAN can detect memory safety bugs
within unsafe code as well as “safe” code. Such bugs (e.g., UAF on a
smart pointer) can arise due to issues originating from unsafe code
(§5.4). Nevertheless, LITERSAN does not prevent directly-linked
C/C++ library code from compromising Rust programs.

Bug detection via static analysis. Static analysis is also actively
explored to detect bugs in Rust programs. Rudra [4] identifies three
common memory safety bug patterns and performs static analysis
based on these patterns. Similarly, MirChecker [28] also learns exist-
ing bug patterns and utilizes Abstract Interpretation techniques for
bug detection. Both Rupair [17] and SafeDrop [9] employ data-flow

analysis: Rupair addresses buffer overflows while SafeDrop focuses
on detecting invalid memory deallocations. FFIChecker [29] also
targets memory management errors specifically caused by interac-
tions of Rust and external libraries through the Foreign Function
Interface (FFI). SyRust [72], on the other hand, uses program syn-
thesis to generate test cases for testing Rust library APIs.

These tools effectively detect their respective types of bugs, but
suffer from high false positive rates. For example, Rudra [4] reports
the most bugs among these tools but has a false positive rate as high
as 89%. In contrast, LITERSAN does not suffer from false positives—
namely, each reported bug corresponds to a real memory safety
violation, though LITERSAN may introduce redundant memory-safe
checks due to the conservative nature of static analysis. Addition-
ally, LITERSAN maintains lightweight analysis time (§8.3), whereas
static analysis tools often impose prohibitive analysis time for the
sake of broader code coverage.

11 CONCLUSION

Rust provides strong memory safety through its ownership seman-
tics and type system. However, these guarantees can be undermined
by the use of unsafe code, which reintroduces memory safety vul-
nerabilities. To detect such bugs, ASan-based tools are commonly
used. Yet, even state-of-the-art sanitizers like ERASan and RustSan
incur substantial performance and memory overhead, and still fail
to catch certain memory safety violations.

Therefore, we propose a novel Rust memory sanitizer, LITER-
San, with lower overhead and more comprehensive and accurate
memory error detection than ERASan and RustSan. We achieve this
goal by precisely identifying risky pointers and selectively instru-
menting those risky pointers to minimize overhead while ensuring
higher detection coverage than ERASan and RustSan. As a result,
LiTERSAN imposes 18.84% runtime overhead, 97.21% compilation
overhead, and 0.81% memory overhead, with geometric mean, while
ERASan and RustSan, respectively, incur 152.05% and 183.50% run-
time overhead, 1635.35% and 1193.31% compilation overhead, and
739.27% and 861.98% memory overhead. Furthermore, LITERSAN
detects 55 memory safety vulnerabilities with 100% accuracy, unlike
ASan-based approaches that miss four of them.

REFERENCES

[1] Hussain M. J. Almohri and David Evans. 2018. Fidelius Charm: Isolating Unsafe
Rust Code. In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy (CODASPY ’18). Association for Computing Machinery, New
York, NY, USA, 248-255. https://doi.org/10.1145/3176258.3176330

Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Miiller, and Alexan-

der J. Summers. 2020. How Do Programmers Use Unsafe Rust? Proc. ACM

Program. Lang. 4, OOPSLA, Article 136 (Nov. 2020), 27 pages. https://doi.org/

10.1145/3428204

[3] AWS. 2025. Verify the Safety of the Rust Standard Library. https://
aws.amazon.com/blogs/opensource/verify- the- safety- of- the- rust- standard-
library/. (2025).

[4] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. 2021.
Rudra: Finding Memory Safety Bugs in Rust at the Ecosystem Scale. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP °21).
Association for Computing Machinery, New York, NY, USA, 84-99. https://
doi.org/10.1145/3477132.3483570

[5] Inyoung Bang, Martin Kayondo, HyunGon Moon, and Yunheung Paek. 2023.
TRust: A Compilation Framework for In-process Isolation to Protect Safe Rust
against Untrusted Code. In 32nd USENIX Security Symposium (USENLX Security
23). USENIX Association, Anaheim, CA, 6947-6964. https://www.usenix.org/
conference/usenixsecurity23/presentation/bang

—_
o,

https://doi.org/10.1145/3176258.3176330
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204
https://aws.amazon.com/blogs/opensource/verify-the-safety-of-the-rust-standard-library/
https://aws.amazon.com/blogs/opensource/verify-the-safety-of-the-rust-standard-library/
https://aws.amazon.com/blogs/opensource/verify-the-safety-of-the-rust-standard-library/
https://doi.org/10.1145/3477132.3483570
https://doi.org/10.1145/3477132.3483570
https://www.usenix.org/conference/usenixsecurity23/presentation/bang
https://www.usenix.org/conference/usenixsecurity23/presentation/bang

=

]

(71

>

]

9]

[10]

(1]

(12]

[13

[14]

[15]

[18

[19]

[20

[21

[22

[23
[24]

[25]

™
&S

[27]

Marcel Bohme, Danushka Liyanage, and Valentin Wiistholz. 2021. Estimating
residual risk in greybox fuzzing. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 230-241. https://doi.org/10.1145/3468264.3468570
Hung-Mao Chen, Xu He, Shu Wang, Xiaokuan Zhang, and Kun Sun. 2025.
TypePulse: Detecting Type Confusion Bugs in Rust Programs. (2025).
arXiv:cs.CR/2502.03271 https://arxiv.org/abs/2502.03271.

Kyuwon Cho, Jongyoon Kim, Kha Dinh Duy, Hajeong Lim, and Hojoon Lee. 2024.
RustSan: Retrofitting AddressSanitizer for Efficient Sanitization of Rust. In 33rd
USENIX Security Symposium (USENIX Security 24). USENIX Association, Philadel-
phia, PA, 3729-3746. https://www.usenix.org/conference/usenixsecurity24/
presentation/cho-kyuwon

Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. 2023. SafeDrop: De-
tecting Memory Deallocation Bugs of Rust Programs via Static Data-flow Anal-
ysis. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 82 (May 2023), 21 pages.
https://doi.org/10.1145/3542948

Jansens Dana. 2021. Supporting the Use of Rust in the Chromium Project.
(2021). https://security.googleblog.com/2021/09/supporting-use- of-rust-in-
chromium.html.

Alain Deutsch. 1994. Interprocedural may-alias analysis for pointers: beyond
k-limiting. SIGPLAN Not. 29, 6 (June 1994), 230-241. https://doi.org/10.1145/
773473.178263

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust Used
Safely by Software Developers?. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (ICSE ’20). Association for Computing Ma-
chinery, New York, NY, USA, 246-257. https://doi.org/10.1145/3377811.3380413
Krzysztof Grajek. 2024. Rust Static vs. Dynamic Dispatch. (2024). https:
//softwaremill.com/rust-static-vs-dynamic-dispatch/.

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Her-
bert Bos, and Erik van der Kouwe. 2016. TypeSan: Practical Type Confusion
Detection. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 517-528. https://doi.org/10.1145/2976749.2978405

Michael Hind. 2001. Pointer Analysis: Haven’t We Solved This Problem Yet?. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE *01). Association for Computing Machinery,
New York, NY, USA, 54-61. https://doi.org/10.1145/379605.379665

Susan Horwitz. 1997. Precise flow-insensitive may-alias analysis is NP-hard.
ACM Trans. Program. Lang. Syst. 19, 1 (Jan. 1997), 1-6. https://doi.org/10.1145/
239912.239913

Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qiliang Fan, and Zhizhong Pan.
2021. Rupair: Towards Automatic Buffer Overflow Detection and Rectification for
Rust. In Proceedings of the 37th Annual Computer Security Applications Conference
(ACSAC °21). Association for Computing Machinery, New York, NY, USA, 812-823.
https://doi.org/10.1145/3485832.3485841

Intel Corporation 2021. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation. Order Number: 253665-075US.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: securing the foundations of the Rust programming language. Proc.
ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages.

Martin Kayondo, Inyoung Bang, Yeongjun Kwak, HyunGon Moon, and Yunheung
Paek. 2024. MetaSafe: Compiling for Protecting Smart Pointer Metadata to Ensure
Safe Rust Integrity. In 33rd USENIX Security Symposium (USENIX Security 24).
USENIX Association, Philadelphia, PA, 3711-3728. https://www.usenix.org/
conference/usenixsecurity24/presentation/kayondo

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-Safe:
Automatically Locking down the Heap between Safe and Unsafe Languages. In
Proceedings of the Seventeenth European Conference on Computer Systems. 17.
Steve Klabnik and Carol Nichols. 2022. The Rust Programming Language. https:
//doc.rust-lang.org/stable/book/

S2 Lab. 2025. Github : ERASan. (2025). https://github.com/S2-Lab/ERASan
Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann
Hartig. 2017. Sandcrust: Automatic Sandboxing of Unsafe Components in Rust.
In Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS’17). Association for Computing Machinery, New York, NY, USA,
51-57. https://doi.org/10.1145/3144555.3144562

The Rust Programming Language. 2024. Understanding Ownership. https:
//doc.rust-lang.org/book/ch04-00-understanding-ownership.html. (2024).
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2nd International
Symposium on Code Generation and Optimization (CGO ’04). IEEE Computer
Society, Palo Alto, CA, 12. https://doi.org/10.1109/CG0.2004.1281665

Guoren Li, Hang Zhang, Jinmeng Zhou, Wenbo Shen, Yulei Sui, and Zhiyun
Qian. 2023. A Hybrid Alias Analysis and Its Application to Global Variable
Protection in the Linux Kernel. In 32nd USENIX Security Symposium. https:
//www.usenix.org/conference/usenixsecurity23/presentation/li- guoren

[28] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021. MirChecker:

Detecting Bugs in Rust Programs via Static Analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS °21).
Association for Computing Machinery, New York, NY, USA, 2183-2196. https:
//doi.org/10.1145/3460120.3484541

Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C. S. Lui. 2022. Detecting
Cross-language Memory Management Issues in Rust. In Computer Security —
ESORICS 2022: 27th European Symposium on Research in Computer Security, Copen-
hagen, Denmark, September 26-30, 2022, Proceedings, Part IIl. Springer-Verlag,
Berlin, Heidelberg, 680-700. https://doi.org/10.1007/978-3-031-17143-7_33
Linux 2025. time(1) — Linux manual page. (2025). https://man7.org/linux/man-
pages/man1/time.1.html.

Peiming Liu, Gang Zhao, and Jeff Huang. 2020. Securing Unsafe Rust Programs
with XRust. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE °20). Association for Computing Machinery, New
York, NY, USA, 234-245. https://doi.org/10.1145/3377811.3380325

LLVM. LLVM Language Reference Manual. (????). https://llvm.org/docs/
LangRef.html https://llvm.org/docs/LangRef.html.

Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security.

Giorgio Martinez. 2023. Unlocking Performance: Optimizing Rust’s Dynamic
Dispatch. (2023). https://medium.com/@giorgio.martinez1926/unlocking-
performance-optimizing-rusts-dynamic-dispatch-600b57f78{99.

Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. 2022. Cross-Language
Attacks. In Proceedings of the 2015 Network and Distributed System Security Sym-
posium (NDSS). The Internet Society, San Diego, CA, USA.

Microsoft. 2019. Trends, challenges, and strategic shifts in the software vulnera-
bility mitigation landscape. (2019).

Shane Miller and Carl Lerche. 2022. Sustainability with Rust. (2022). https:
//aws.amazon.com/blogs/opensource/sustainability-with-rust/

Jiun Min, Dongyeon Yu, Seongyun Jeong, Dokyung Song, and Yuseok Jeon. 2024.
ERASan: Efficient Rust Address Sanitizer. In 2024 IEEE Symposium on Security
and Privacy (SP). 4053-4068. https://doi.org/10.1109/SP54263.2024.00258
MITRE 2018. CVE-2018-1000810. (2018). https://www.cve.org/CVERecord?id=
CVE-2018-1000810.

MITRE 2019. CVE-2019-16760. (2019). https://www.cve.org/CVERecord?id=
CVE-2019-16760.

Amit Nadiger. 2023. Dynamic & Static Dispatch in Rust. (2023). https://
www.linkedin.com/pulse/dynamic- static- dispatch-rust-amit-nadiger/.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Memory Safety for c. In 2009
ACM SIGPLAN Conference on Programming Language Design and Implementation.
Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler-Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management (ISMM ’10). ACM, 31-40.
Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2005. Principles of
Program Analysis. Springer.

Ben Niu and Gang Tan. 2014. Modular control-flow integrity. Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (2014). https://api.semanticscholar.org/CorpusID:2282679
NSA-CSS. 2022. NSA Releases Guidance on How to Protect Against Software
Memory Safety Issues. (2022).

Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing Guo. 2018. Mapping to Bits:
Efficiently Detecting Type Confusion Errors. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC ’18). 518-528.

Bogqin Qin, Yilun Chen, Haopeng Liu, Hua Zhang, Qiaoyan Wen, Linhai Song,
and Yiying Zhang. 2024. Understanding and Detecting Real-World Safety Issues
in Rust. IEEE Trans. Softw. Eng. 50, 6 (March 2024), 1306-1324. https://doi.org/
10.1109/TSE.2024.3380393

H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision
Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358-366. http://www.jstor.org/
stable/1990888

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan
Burow. 2021. Keeping Safe Rust Safe with Galeed. In Annual Computer Security
Applications Conference (ACSAC °21). Association for Computing Machinery, New
York, NY, USA, 824-836. https://doi.org/10.1145/3485832.3485903

Rust 2025. Crate tracing. (2025). https://crates.io/crates/tracing.

Rust 2025. Crate vm-memory. (2025). https://crates.io/crates/vm-memory.
Rust 2025. Function transmute. (2025). https://doc.rust-lang.org/std/mem/
fn.transmute.html.

Rust 2025. Function transmute. (2025). https://doc.rust-lang.org/std/mem/
fn.transmute.html.

Rust 2025. Method as_ptr. (2025).
struct.Vec.html#method.as_ptr.

Rust 2025. Method set_len. (2025).
struct.Vec.html#method.set_len.

https://doc.rust-lang.org/std/vec/

https://doc.rust-lang.org/std/vec/

https://doi.org/10.1145/3468264.3468570
http://arxiv.org/abs/cs.CR/2502.03271
https://arxiv.org/abs/2502.03271
https://www.usenix.org/conference/usenixsecurity24/presentation/cho-kyuwon
https://www.usenix.org/conference/usenixsecurity24/presentation/cho-kyuwon
https://doi.org/10.1145/3542948
https://security.googleblog.com/2021/09/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2021/09/supporting-use-of-rust-in-chromium.html
https://doi.org/10.1145/773473.178263
https://doi.org/10.1145/773473.178263
https://doi.org/10.1145/3377811.3380413
https://softwaremill.com/rust-static-vs-dynamic-dispatch/
https://softwaremill.com/rust-static-vs-dynamic-dispatch/
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/239912.239913
https://doi.org/10.1145/239912.239913
https://doi.org/10.1145/3485832.3485841
https://www.usenix.org/conference/usenixsecurity24/presentation/kayondo
https://www.usenix.org/conference/usenixsecurity24/presentation/kayondo
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://github.com/S2-Lab/ERASan
https://doi.org/10.1145/3144555.3144562
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doi.org/10.1109/CGO.2004.1281665
https://www.usenix.org/conference/usenixsecurity23/presentation/li-guoren
https://www.usenix.org/conference/usenixsecurity23/presentation/li-guoren
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1007/978-3-031-17143-7_33
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://doi.org/10.1145/3377811.3380325
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://medium.com/@giorgio.martinez1926/unlocking-performance-optimizing-rusts-dynamic-dispatch-600b57f78f99
https://medium.com/@giorgio.martinez1926/unlocking-performance-optimizing-rusts-dynamic-dispatch-600b57f78f99
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://doi.org/10.1109/SP54263.2024.00258
https://www.cve.org/CVERecord?id=CVE-2018-1000810
https://www.cve.org/CVERecord?id=CVE-2018-1000810
https://www.cve.org/CVERecord?id=CVE-2019-16760
https://www.cve.org/CVERecord?id=CVE-2019-16760
https://www.linkedin.com/pulse/dynamic-static-dispatch-rust-amit-nadiger/
https://www.linkedin.com/pulse/dynamic-static-dispatch-rust-amit-nadiger/
https://api.semanticscholar.org/CorpusID:2282679
https://doi.org/10.1109/TSE.2024.3380393
https://doi.org/10.1109/TSE.2024.3380393
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
https://doi.org/10.1145/3485832.3485903
https://crates.io/crates/tracing
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.as_ptr
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.as_ptr
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.set_len
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.set_len

[57

[58]

[59

[61]

[69

[70

[71]

[72

[75

[76]

[77

[78]

[79

[80]

[81]

Rust 2025. Rust Compiler Development Guide. (2025). https://rustc-dev-
guide.rust-lang.org/mir/index.html.

Rust 2025. Scoping rules. (2025). https://doc.rust-lang.org/rust-by-example/
scope.html.

Rust 2025. Trait Drop. (2025). https://doc.rust-lang.org/std/ops/trait.Drop.html.
Rust-fuzz 2025. RUST Fuzzing : afl.rs. (2025). https://github.com/rust-fuzz/afl.rs.
Rust-fuzz 2025. RUST Fuzzing : cargo fuzz. (2025). https://github.com/rust-fuzz/
cargo-fuzz.

Rust-fuzz 2025. RUST Fuzzing : honggfuzz-rs. (2025). https://github.com/rust-
fuzz/honggfuzz-rs.

Rustsec 2023. RUSTSEC-2023-0056. (2023). https://rustsec.org/advisories/
RUSTSEC-2023-0056.html.

Rustsec 2023. RUSTSEC-2023-0078. (2023). https://rustsec.org/advisories/
RUSTSEC-2023-0078.html.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference. USENIX Association, Boston, MA, 309-318.

Servo 2019. Servo: The Parallel Browser Engine Project. (2019). https://servo.org/.
Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for security. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1275-1295.

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijin Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In 2019 IEEE
Symposium on Security and Privacy. Los Alamitos, CA, USA.

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction. 265-266.

Laszl6 Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy. 48—62. https:
//doi.org/10.1109/SP.2013.13

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War
in Memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy
(SP ’13). IEEE Computer Society, Washington, DC, USA, 48-62.

Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Puasuareanu. 2021.
SyRust: automatic testing of Rust libraries with semantic-aware program syn-
thesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI 2021). Association for
Computing Machinery, New York, NY, USA, 899-913.

Adrian Taylor, Andrew Whalley, Dana Jansens, and Nasko Oskov. 2021. An
update on Memory Safety in Chrome. https://security.googleblog.com/2021/09/
an-update- on-memory-safety- in-chrome.html. (2021).

The White House. 2024. Press Release: Future Software Should Be Memory Safe.
https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/press-
release-technical-report/. (2024).

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium.

Emanuel Vintila, Philipp Zieris, and Julian Horsch. 2025. Evaluating the Effec-
tiveness of Memory Safety Sanitizers . In 2025 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 88-88.

Secure Code working group. 2025. RustSec Advisory Database. (2025). https:
//rustsec.org/.

Tianrou Xia, Hong Hu, and Dinghao Wu. 2024. DEEPTYPE: Refining Indirect
Call Targets with Strong Multi-layer Type Analysis. In 33rd USENIX Security
Symposium (USENIX Security 24).

Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R. Lyu.
2021. Memory-Safety Challenge Considered Solved? An In-Depth Study with All
Rust CVEs. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 3 (sep 2021), 25 pages.

Zhiwu Xu, Bohao Wu, Cheng Wen, Bin Zhang, Shengchao Qin, and Mengda
He. 2024. RPG: Rust library fuzzing with pool-based fuzz target generation and
generic support. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1-13.

Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. 2023. Towards
Understanding the Runtime Performance of Rust. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE 22).
Association for Computing Machinery, New York, NY, USA, Article 140, 6 pages.

https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/rust-by-example/scope.html
https://doc.rust-lang.org/rust-by-example/scope.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://github.com/rust-fuzz/afl.rs
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/honggfuzz-rs
https://github.com/rust-fuzz/honggfuzz-rs
https://rustsec.org/advisories/RUSTSEC-2023-0056.html
https://rustsec.org/advisories/RUSTSEC-2023-0056.html
https://rustsec.org/advisories/RUSTSEC-2023-0078.html
https://rustsec.org/advisories/RUSTSEC-2023-0078.html
https://servo.org/
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://rustsec.org/
https://rustsec.org/

A CONTINUED BUG LIST

Table 4 reports the detection results of LITERSAN and ASan on
earlier RustSec vulnerabilities, complementing Table 3. Together,
these tables cover all publicly disclosed memory safety bugs re-
ported in the RustSec Advisory Database to date. In total, the com-
bined dataset includes 55 vulnerabilities: 21 use-after-free (UAF), 3
double-free (DF), 21 out-of-bounds accesses (OOB), 7 use-before-
initialization (UBI), and 3 null-pointer dereference (NPD). They also
cover all the vulnerabilities experimented by ERASan.

As a result, LITERSAN successfully detects all the listed bugs
identified by ASan, demonstrating full coverage of ASan’s detection
capabilities on Rust memory safety bugs. Furthermore, as shown in
Table 3, LITERSAN detects additional Rust-specific bugs, including
UBI and certain safe-code out-of-bounds violations. ASan fails to
capture due to its reliance on coarse-grained shadow memory and
red-zone mechanisms, while LITERSAN deploys a metadata-based
solution with respect to Rust’s type model.

RUSTSEC ID Type Class ASan LiTERSAN
RUSTSEC-2020-0061 ~ NPD Null-pointer deref v v
RUSTSEC-2023-0013 NPD Null-pointer deref v v
RUSTSEC-2020-0039 OOB Spatial v v
RUSTSEC-2020-0167 OOB Spatial 4 4
RUSTSEC-2021-0003 ~ OOB Spatial v v
RUSTSEC-2021-0048 OOB Spatial v v
RUSTSEC-2021-0094 OOB Spatial v v
RUSTSEC-2023-0015 OOB Spatial v v
RUSTSEC-2023-0016 ~ OOB Spatial 4 4
RUSTSEC-2023-0030 OOB Spatial v v
RUSTSEC-2023-0032 OOB Spatial v v
RUSTSEC-2019-0023 ~ UAF Temporal v 4
RUSTSEC-2020-0005 UAF Temporal v v
RUSTSEC-2020-0060 UAF Temporal v v
RUSTSEC-2020-0091 UAF Temporal v v
RUSTSEC-2020-0097 UAF Temporal v v
RUSTSEC-2022-0070 ~ UAF Temporal v v
RUSTSEC-2022-0078 ~ UAF Temporal v v
RUSTSEC-2023-0005 UAF Temporal v v
RUSTSEC-2023-0009 UAF Temporal v v
RUSTSEC-2021-0031 UAF Temporal v v
RUSTSEC-2021-0128 UAF Temporal v v
RUSTSEC-2021-0130 ~ UAF Temporal v v
RUSTSEC-2019-0009 DF Temporal v v
RUSTSEC-2019-0034 DF Temporal v v
RUSTSEC-2020-0038 DF Temporal v v
RUSTSEC-2021-0018 DF Temporal v v
RUSTSEC-2021-0028 DF Temporal v v
RUSTSEC-2021-0033 DF Temporal v v
RUSTSEC-2021-0039 DF Temporal v v
RUSTSEC-2021-0042 DF Temporal v v
RUSTSEC-2021-0047 DF Temporal v v
RUSTSEC-2021-0053 DF Temporal v v

Table 4: Detection capability of ASan and LITERSAN on memory safety
vulnerabilities, grouped by bug class. They are memory safety vulnerabil-
ities discovered and registered in RustSec earlier than 20 memory safety
vulnerabilities in Table 3.

B TYPE (2) UNSAFE APIS

We list the Type (2) unsafe APIs that may violate memory
safety, within our scope, without involving raw pointers:
unchecked_add/sub/mul/neg, forward/backward_unchecked,
unchecked_shl/shr, and set_len. LITERSAN handles them by
inserting bounds or validity checking at their call sites.

C ABLATION STUDY RESULTS

The Pointer Count column in Table 5 reports the number of
risky pointers identified by LITERSAN, the total number of point-
ers guarded by ASan. Across all benchmarks, the number of risky
pointers is substantially lower than that of ASan-guarded pointers,
indicating that most pointers in Rust are guaranteed to be safe,
ASan checks are excessively redundant.

Table 5 also presents the detailed runtime and memory overhead
of SEMI-LITERSAN, for ablation study. These results allow for two
key comparisons: (1) with LITERSAN, to quantify the impact of
lightweight metadata-based runtime checking mechanism, and (2)
with ASan-based tools, to evaluate the effectiveness of Rust-specific
static analysis. Overall, both components significantly contribute
to reducing runtime and memory overhead.

D COMPARISON OF LITERSAN AND ASAN

LITERSAN significantly reduces the number of instrumented point-
ers compared to ASan by leveraging precise Rust-specific static
analysis to identify risky pointers. As shown in Table 5, LITERSAN
instruments much less pointers than LITERSAN across all bench-
marks, yielding great runtime and memory performance improve-
ment.

Specifically, ASan incurs 359.90% runtime overhead, while SEmI-
LITERSAN incurs 70.04%, indicating that our precise risky pointer
identification and selective instrumentation reduce overhead by
80.54%. LITERSAN further lowers the overhead to 18.94%, demon-
strating that replacing ASan’s heavyweight shadow memory and
red zones with our lightweight metadata yields an additional
73.10% reduction. As for memory usage, ASan introduces 3,282.12%
overhead. SEMI-LITERSAN lowers it to 443.90%, through precise
static analysis and selective instrumentation, while LITERSAN only
presents negligible overhead of 0.81%, owing to the lightweight
metadata-based run checks.

E BENCHMARK COMPILATION OPTIONS

To ensure both accurate static analysis and evaluation on realistic
production situation, we adopt a staged compilation process. For
each benchmark, the compiler first emits LLVM IR with inlining
and LLVM prepopulate passes disabled so that MIR-derived anno-
tations are preserved in the IR. At this stage, LITERSAN and the
comparison tools (ERASan and RustSan) perform static analysis
and insert their respective instrumentation. After instrumentation,
compilation resumes with the standard optimization pipeline to
produce optimized (i.e., -03) executables.

This approach is essential rather than a shortcut. Running LLVM
optimizations before analysis can replace or eliminate original in-
structions and drop critical metadata, leading to missed identifica-
tion of risky operations. This metadata-preservation challenge is
not unique to LITERSAN but equally affects ERASan and RustSan;
analyzing directly on optimized IR would cause all these tools to
miss protecting unsafe operations. By applying analysis on pre-
optimized IR, we preserve full semantic information and ensure
that risky pointers are precisely identified.

Pointer Count Runtime Overhead (%) Memory Overhead (%)

Benchmark Risky ASan-guarded | LITERSAN SEMI-LITERSAN ASan | LITERSAN SEMI-LITERSAN ASan
base64 14,320 1,075,072 35.21 89.27 624.71 3.56 3,015.06 10,723.03
byteorder 355 24,275 1.72 17.75 131.23 0.03 248.62 1,065.10
bytes(buf) 376 37,783 28.39 78.27 289.20 2.68 37.63 411.25
bytes(bytes) 411 18,354 25.57 79.32 292.98 2.15 1,044.84 21,368.49
bytes(mut) 484 26,796 27.82 79.64 295.37 2.19 3,433.34 64,467.47
indexmap 2,214 378,711 23.06 87.86 419.93 1.78 1,233.98 4,620.00
itoa 32 5,195 20.34 88.56 241.11 1.43 28.21 123.68
memchr 185 16,633 13.18 53.17 342.19 1.96 39.85 81.62
num-integer 3,095 75,990 1.17 5.77 35.12 0.02 416.44 769.33
ryu 82 9,769 17.71 52.62 101.45 0.28 66.26 92.20
semver 81 4,787 4.83 3291 536.83 1.88 4,686.86 13,347.98
smallvec 278 13,736 13.34 53.71 284.08 1.14 2,863.90 78,376.98
strsim-rs 431 4,038 1.06 26.63 522.02 1.36 3,943.39 9,869.13
uuid(format) 50 730,713 40.62 75.66 481.02 0.15 157.72 1,008.17
uuid(parse) 50 731,856 37.31 96.46 467.23 0.15 166.83 1,239.21
bat 25,546 1,859,420 321.11 542.13 1,187.60 4.96 1,817.64 36,539.25
crossbeam-utils 290 5,695 1.28 16.19 187.15 0.05 41.91 548.96
hashbrown 383 67,106 9.32 35.51 124.61 0.37 4,067.88 28,530.65
hyper 15,201 737,542 43.57 84.70 323.03 3.69 1,752.87 35,747.78
rand(generators) 78 17,807 31.85 55.77 151.86 0.26 69.77 378.25
rand(misc) 258 9,632 7.94 30.49 131.42 0.22 1,050.56 8,025.48
regex 3,896 49,383 38.54 243.58 1,584.07 1.83 6,739.62 37,082.47
ripgrep 18,734 962,161 304.03 52454 1,210.16 4.77 51.02 28,728.19
syn 23,034 1,770,205 72.29 278.64 1,390.21 1.65 33.68 609.24
tokio 19,375 728,064 53.35 108.46 914.47 1.33 769.19 1,843.51
unicode 363 7,715 8.89 42.59 157.94 0.86 41.17 333.48
url 2,266 255,893 21.06 85.74 937.53 1.37 206.59 791.42
servo 14.63 M 16,994,787 86.58 218.05 1,281.96 2.82 8,174.46 52,329.43
GeoMean \ - - 18.84 7004 359.90 | 0.81 44390 3,282.12

Table 5: Comparison of LITERSAN, SEMI-LITERSAN, and ASan. The table shows pointer counts (risky and ASan-guarded), runtime overhead, and
memory overhead across benchmarks.

At the same time, compiling instrumented IR under -03 guar-
antees that our evaluation reflects realistic deployment conditions.
Most LLVM optimizations transform instructions in place rather
than reordering them, so checks remain associated with the correct
memory operations. Furthermore, because LITERSAN implements
its checks as runtime calls with observable actual effects, subse-
quent LLVM optimizations do not remove them. Our experiments
demonstrate this property in practice, as LITERSAN achieves 100%
bug detection even when executing fully optimized binaries.

In summary, this staging is a necessary and fair methodology: it
preserves metadata for accurate analysis, ensures that checks are
preserved under aggressive optimization, and yields performance
results under realistic deployment. Future improvements in preserv-
ing Rust-specific metadata across optimization could streamline
this process, but the present design is the only viable way to ensure
correctness across Rust memory safety sanitizers.

	Abstract
	1 Introduction
	2 Background
	2.1 Rust's Memory Safety Guarantee
	2.2 Pointer Analyses in Rust
	2.3 Address Sanitizer and Its Limitations
	2.4 Motivating Example
	2.5 Ideal Memory Error Detection for Rust

	3 Threat Model and Challenges
	3.1 Threat Model
	3.2 Challenges

	4 Overview
	5 Rust-Specific Static Analysis
	5.1 Static Analysis Scope Restriction
	5.2 Risky Pointer Definition
	5.3 Spatially Risky Pointer Identification
	5.4 Temporally Risky Pointer Identification
	5.5 Soundness and Precision

	6 Lightweight Runtime Checks
	6.1 Metadata Structure
	6.2 Metadata Inference
	6.3 Selective Instrumentation
	6.4 Runtime Check

	7 Implementation
	8 Evaluation
	8.1 Runtime Overhead
	8.2 Memory Overhead
	8.3 Compilation Overhead
	8.4 Security Evaluation

	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Continued Bug List
	B Type (2) Unsafe APIs
	C Ablation Study Results
	D Comparison of LiteRSan and ASan
	E Benchmark Compilation Options

