
PrivAnalyzer: Measuring the Efficacy of Linux
Privilege Use

John Criswell
University of Rochester

criswell@cs.rochester.edu

Jie Zhou
University of Rochester

jzhou41@cs.rochester.edu

Spyridoula Gravani
University of Rochester

sgravani@cs.rochester.edu

Xiaoyu Hu
BitFusion.io Inc.

hxy9243@gmail.com

Abstract—Operating systems such as Linux break the power
of the root user into separate privileges (which Linux calls
capabilities) and give processes the ability to enable privileges
only when needed and to discard them permanently when the
program no longer needs them. However, there is no method of
measuring how well the use of such facilities reduces the risk of
privilege escalation attacks if the program has a vulnerability.

This paper presents PrivAnalyzer, an automated tool that
measures how effectively programs use Linux privileges. Priv-
Analyzer consists of three components: 1) AutoPriv, an existing
LLVM-based C/C++ compiler which uses static analysis to
transform a program that uses Linux privileges into a program
that safely removes them when no longer needed, 2) ChronoPriv,
a new LLVM C/C++ compiler pass that performs dynamic
analysis to determine for how long a program retains various
privileges, and 3) ROSA, a new bounded model checker that can
model the damage a program can do at each program point if an
attacker can exploit the program and abuse its privileges. We use
PrivAnalyzer to determine how long five privileged open-source
programs retain the ability to cause serious damage to a system
and find that merely transforming a program to drop privileges
does not significantly improve security. However, we find that
simple refactoring can considerably increase the efficacy of Linux
privileges. In two programs that we refactored, we reduced the
percentage of execution in which a device file can be read and
written from 97% and 88% to 4% and 1%, respectively.

I. INTRODUCTION

Commodity operating systems such as Windows [1] and
Linux [2] mediate a process’s access to system objects such
as files, pipes, and sockets. Significant research has been
devoted to designing access controls and privilege models
which reduce the damage that an application can cause should
an attacker exploit a vulnerability within the application.
Examples of such access controls include Unix discretionary
access control [2], [3], fine-grained privileges first developed
for compartmented mode workstations [4] and now deployed
in Windows and Linux [1], [2], and capabilities such as those
found in Capsicum on FreeBSD [5].

Linux privileges (called capabilities) [6] are intended to
reduce the risk of privilege escalation attacks, and they are
increasingly being used in the deployment of inter-application
isolation mechanisms such as Linux containers [7]. Docker [8],
a major container platform, uses Linux privileges to reduce
the likelihood of a bug in a container leading to a privilege
escalation exploit. Docker removes the need for privileged
containers by assigning only the necessary capabilities for
launching execution and allows for dynamic addition/removal

as necessary [8]. Unfortunately, it is unclear how to effectively
use capabilities and benefit from such a design.

Currently, programmers manually reason about how long
their programs retain privileges and what damage an attacker
could do with those privileges if the program has an exploit.
Such reasoning must be done for every possible type of attack
and must account for the process’s privileges, user IDs, group
IDs, and the owners, groups, and permissions of directories,
files, devices, and other objects. Manual analysis is error-
prone and fails to scale. It also fails to provide a quantifiable
metric that can be used to compare different software designs.
While there are tools that evaluate the efficacy of mandatory
access controls [9], [10], there are no tools, to the best of
our knowledge, that evaluate how much security improves
when real programs use Linux privileges. Consequently, the
value of Linux privileges is unknown. This may be why many
developers forgo using them.

To address this problem, we have developed an auto-
mated tool named PrivAnalyzer. PrivAnalyzer consists of
three components: 1) AutoPriv, 2) ChronoPriv, and 3) ROSA.
AutoPriv [11] is an existing compiler that computes which
privileges are still usable by a program at each program point
and transforms the program to permanently drop privileges
when no longer needed. We feed AutoPriv’s output to the
second component, ChronoPriv, our new compiler pass that
records the number of instructions executed with a specific
privilege set along with the process’s user IDs and group
IDs. The third component, ROSA (Rewrite of Objects for
Syscall Analysis), is a new bounded model checker, written
in Maude [12], that models the Linux system call API and its
privileges. Given a set of system calls that an application is
allowed to make, the number of times it is allowed to make
each system call, and the privileges each system call is allowed
to use, ROSA can determine whether an application could
put the system into a specified compromised state. ROSA
models processes, directories, files, sockets, and a subset of
system calls that operate upon these objects. ROSA takes
ChronoPriv’s output as its input along with a description of a
compromised system state and decides whether the program,
if it were compromised, could put the system into the compro-
mised state. Altogether, PrivAnalyzer can determine whether
a vulnerability could put the system into a compromised state
and for how long the program poses such a risk. Programmers
can use PrivAnalyzer to determine the ramifications of using

1



various privileges within their programs.
Using PrivAnalyzer, we modeled four privilege escalation

attacks on five open-source programs that were modified to
use Linux privileges. Our results show that simply adding
code to enable privileges when needed and disabling them
permanently when no longer needed is insufficient; programs
such as passwd and su retain powerful privileges for over
88% of their execution that an attacker could use to read
and write device files such as /dev/mem. Subsequently, we
manually analyzed two of these programs and discovered that
the poor results are primarily due to design decisions motivated
by the fact that most Unix systems only have a root user
and no privileges. With some simple refactoring, we modified
passwd and su so that they used these powerful privileges
for only 4% of their execution, significantly decreasing the
window of opportunity in which an attacker could mount a
privilege escalation attack on these programs.

To summarize, our contributions are as follows:
• We present an automated tool, PrivAnalyzer, that mea-

sures how effectively programs use Linux privileges.
It aims to help security-critical software developers to
minimize privileges use. We describe the design and
implementation of the ChronoPriv dynamic analysis and
the ROSA bounded model checker which we added to
AutoPriv [11] to create PrivAnalyzer.

• We evaluate the performance of the ROSA bounded
model checker.

• We use PrivAnalyzer to quantitatively show that merely
using the minimum set of Linux privileges is insufficient
in mitigating privilege escalation attacks. Programs such
as passwd and su maintain powerful privileges for 88%
or more of their execution.

• We study and refactor two programs to use Linux priv-
ileges more effectively. PrivAnalyzer shows that these
refactored programs use powerful privileges for 4% of
their execution.

• We summarize two lessons learnt from refactoring
passwd and su that should help programmers write
software that better resists privilege escalation attacks.

The rest of this paper is organized as follows: Sections II,
III, and IV describe Linux privileges, our attack model,
and background on building model checkers in Maude. Sec-
tions V and VI describe the design and implementation of
PrivAnalyzer. Section VII presents our evaluation on security
improvements when using Linux privileges and how to refactor
applications to improve the efficacy of Linux privileges. Sec-
tion VIII evaluates PrivAnalyzer’s performance. Sections IX
and X describe related and future work; Section XI concludes.

II. LINUX PRIVILEGES

Linux divides the power of the root user into separate
privileges (which Linux calls capabilities) [2]. Each privilege
bypasses a subset of the access control rules which the root
user on a traditional Unix system can bypass. For example, the
CAP_CHOWN privilege allows a process to change the owner
of a file to any user even if the process is owned by a non-root

user. Likewise, the CAP_SETUID privilege allows a process
to set its effective, real, and saved user IDs to any value.

Each Linux process has three sets of privileges [6]:
• Effective: This is the privilege set that the operating sys-

tem kernel checks when making access control decisions.
• Permitted: This is the set of privileges that the process is

allowed to use in its effective set.
• Inheritable: This privilege set limits the privileges that a

process can acquire when executing a new program.
The Linux kernel provides system calls which allow a

process to change its effective and permitted sets [2]. The
effective privilege set must always be a subset of the permitted
privilege set, thereby making the permitted set the feature that
limits the privileges that can be enabled and used within the
effective set [6]. A process can only change its permitted set
to a subset of its current value i.e., a process can remove
privileges from its permitted set but cannot add privileges to
its permitted set [6].

Borrowing terminology from the compartmented mode
workstation [4], we say a process raises a privilege when it
turns it on in the effective set and lowers a privilege when
it disables it in the effective set. The PitBull Foundation
system [13] remove operation disables a privilege in both the
effective and permitted sets; a removed privilege is no longer
in the permitted set and can never again be acquired by the
process until it executes a new program [6].

We use three wrappers around the Linux system calls that
manipulate a process’s privileges taken from the AutoPriv
compiler project [11]:

• priv raise: Enable one or more privileges in the effective
privilege set.

• priv lower: Disable one or more privileges in the effec-
tive privilege set.

• priv remove: Disable one or more privileges in both the
effective and permitted privilege sets.

III. ATTACK MODEL

Our attack model is a modified version of the attack model
from the AutoPriv compiler [11]. We assume a strong at-
tacker that can use memory safety attacks against applications.
Consequently, our model allows an attacker to corrupt the
arguments to system calls and to call system calls in an order
not permitted by the original application’s control flow [14],
[15]. Our attack model also permits an attacker to inject code
into an application. However, since there are defenses that can
limit the system calls invoked by a process [16], our model
assumes that attackers can only use system calls used by the
original program [17].

As Hu et al. [11] explain, a consequence of the AutoPriv
attack model is that attackers can use system calls to enable
any privilege in the effective set that still remains in the
process’s permitted set [2]. We assume that Linux kernel is
part of the trusted computing base (TCB), i.e., once a privilege
is removed from the permitted set, it can not be added back.
Our work therefore measures the amount of damage that an
attacker can perform with the privileges in the permitted set.

2



Program

Privilege 
Sets

Privileged 
Instruction 

Counts

AutoPriv 
Static Privilege Analysis

Risk 
Assessment

Compromised 
System State

Program

ChronoPriv 
Dynamic Privilege Analysis

ROSA 
Exploit Analyzer Model Checker

Fig. 1: PrivAnalyzer Architecture

IV. MAUDE BACKGROUND

Maude [12] is a term rewriting language for creating formal
verification tools. Maude programs specify the format of
abstract syntax trees representing terms and rules that rewrite,
or transform, abstract syntax trees from one form to another.
Maude supports both equational rewrite rules and term rewrite
rules. Equational rewrite rules are used to model deterministic
behavior; repeated application of equational rewrite rules must
eventually yield a term that has a unique normal form that
equational rewrite rules cannot rewrite further. Term rewrite
rules permit Maude to model non-deterministic computation
and do not need to yield a unique normal form.

Maude [12] provides a search command that takes a term
representing the initial state of a system and a pattern for what
could be the end state of the system and searches for whether
a set of rewrite rules will take the system from the initial term
to a term matching the search criteria. This feature allows
Maude programs to be used as model checkers: if terms model
the state of a system and the rewrite rules model transitions
between those states, then a user can search the space of terms
for states matching a specified criteria.

To ease modeling of concurrent systems, Maude provides
syntactic sugar for expressing a term rewriting system as an
associative set of objects that can consume messages from an
associative set of messages [12]. While primarily designed for
modeling concurrent systems, we leverage this syntactic sugar
to build our bounded model checker with less Maude code.

V. DESIGN

Figure 1 shows the PrivAnalyzer system. PrivAnalyzer first
analyzes the program with AutoPriv [11]. AutoPriv takes a
program that uses Linux privileges, uses static analysis to find
the points in the program that use privileges, and computes
the program points at which each privilege becomes dead,
i.e., points after which the program will never use the privilege
again. AutoPriv computes this information so that it can safely
insert code into a program that removes privileges from the
permitted set when they are no longer needed, making the
privileges inaccessible to attackers.

Once the AutoPriv component has finished, PrivAnalyzer
feeds the transformed program from AutoPriv into Chrono-

Priv. ChronoPriv measures the number of instructions a pro-
gram executes dynamically while a certain privilege set is
live i.e., the privileges are in the permitted set. ChronoPriv
also records the user and group IDs that the process uses
while various privileges are live. ChronoPriv creates a report
indicating which privilege sets are live and for how long during
a program’s execution.

Finally, PrivAnalyzer feeds the privilege sets and user/-
group ID credentials observed during execution to the ROSA
bounded model checker. As Section V-B describes, ROSA de-
termines if the desired result of an attacker (the Compromised
System State in Figure 1) can be reached with the program’s
credentials, privilege sets, and system calls. ROSA outputs a
risk assessment indicating whether the attacker could abuse the
program’s privileges to reach the compromised system state
should the program have a vulnerability.

By determining what damage an attacker can do with each
privilege set in the program (determined by ROSA), and
by determining for how long each privilege set is available
during execution (determined by ChronoPriv), PrivAnalyzer
can provide a quantitative metric expressing the risk a privi-
leged program poses if it has vulnerabilities. Developers can
use PrivAnalyzer’s results to evaluate the security impact
of changes to a program’s privilege use. For example, if a
developer modifies a program to add a new feature or to fix
a bug, PrivAnalyzer can measure how much the program’s
security posture has changed due to the modification.

We now describe the design of the ChronoPriv dynamic
analysis and the ROSA model checker in more detail.

A. ChronoPriv Vulnerability Analyzer

Developers ask two questions when writing programs that
must bypass the access controls: how long does a program use
different combinations of privileges, and what damage can be
done with those privileges should the program have an ex-
ploitable vulnerability? To answer the first query, we designed
ChronoPriv. As Figure 1 shows, ChronoPriv instruments a
program to record and report the number of instructions
executed with each combination of privileges present in the
program’s permitted privilege set and the process’s credentials
when those privileges are available in the permitted privilege
set. On Linux, ChronoPriv records the permitted privilege set,
the real, saved, and effective user IDs and group IDs of the
process, and the number of instructions executed with that
combination of privileges and user and group IDs. When the
program terminates, ChronoPriv outputs its results.

When using PrivAnalyzer, developers run their programs
with various inputs to measure how many instructions are
executed dynamically with each permitted privilege set and
user/group credentials. When the developer finishes collect-
ing dynamic privilege and user/group credential information,
ChronoPriv feeds its results into the ROSA bounded model
checker. For each combination of privilege set and user/group
ID credentials, ROSA determines whether attacks of interest
to the developer could occur if the program has a vulnera-

3



bility that the attacker can exploit while those privileges and
user/group ID credentials are in effect.

B. ROSA Bounded Model Checker

ROSA is a Maude program built using the Object Maude
extension [12] that models a Linux system with processes,
users, groups, directories, files, and sockets. Writing ROSA in
Maude allows ROSA to be easily enhanced to model new
(existing or hypothetical) access controls. ROSA models a
Linux system as a set of objects and messages. Processes, files,
and sockets are represented as objects while messages sent to
each process object represent system calls that the process
can execute. ROSA then defines a set of rewrite rules that
specifies how the state of objects in the system changes when
a process object “receives” a message, i.e., when the process
executes a system call. Given a set of objects and messages,
ROSA uses Maude term rewriting [12] to determine if a set
of objects matching a specified pattern i.e., the description of
a compromised state, can be created by applying rewrite rules
on the initial set of objects and messages which represent the
system’s initial state. In other words, ROSA searches for states
that are reachable from the initial state of the system that match
the description of a compromised system. If ROSA cannot
find a reachable state matching the compromised state, ROSA
concludes that the program, when running with the specified
privileges and user/group IDs, cannot put the system into the
comprised system state if it were exploited by an attacker.

Process objects represent one task in Linux; a Linux task
is either a process or a thread [2]. Each process object has an
effective, real, and saved user ID (UID) and an effective, real,
and saved group ID (GID). Processes also have a state attribute
indicating whether they are running or have been terminated.
Additionally, a process object has two sets of object IDs,
named rdfset and wrfset, respectively, that contain the
IDs of objects (files and sockets) that the process has opened
for read access and write access, respectively.

File objects use unique integers for their object identifiers.
Each file object also contains attributes for the file name, the
file permissions, the file owner, and the file group. File names
are for human readability; rewrite rules do not use them.

To simulate system calls that modify directory entries,
ROSA provides a directory object which is nearly identical to
a file object: it has attributes for its owner, group, permission
bits, and a human-readable name. Additionally, it contains an
inode attribute which indicates the object ID of the file object
to which the directory entry refers. In this way, ROSA can
model system calls such as unlink() and rename() as
messages that, when consumed by a process, modify directory
entry objects. ROSA also models basic pathname lookup e.g.,
checking for search permission on a file’s parent directory, but
(without loss of generality) only on a single parent directory.

Sockets are objects that have a unique object identifier and
an integer port attribute. Socket objects represent TCP sockets
that can be bound to TCP ports.

System call messages specify the system call name, the
process which is allowed to execute the system call, the

arguments to the system call, and the set of privileges that
the system call can use. Certain arguments (such as file object
identifiers) can be wildcard values, allowing ROSA to try
different values for the argument taken from the set of objects
e.g., files, given in its input. This feature allows ROSA to
model both attacks that modify system call inputs and attacks
that do not. Making privileges an attribute of a system call
(instead of an attribute of the process object) allows ROSA to
model attacks which only use specific privileges with specific
system calls as well as attacks that utilize any of a process’s
privileges with any system call.

ROSA also provides user objects and group objects which
contain a user ID or group ID, respectively. These objects
allow a PrivAnalyzer user to denote which users and groups
can be used to replace wildcard values in system calls that
take user ID and group ID arguments e.g., setresuid().
Restricting UID and GID values to only those specified in
user and group objects allows PrivAnalyzer users to constrain
ROSA’s search space.

To use ROSA, a user provides a set of processes, a set
of user and group objects representing the users and groups
relevant to the attack being analyzed, and a set of objects
upon which the system calls may operate; PrivAnalyzer tailors
the input with the set of system calls and relevant privileges
reported by ChronoPriv. PrivAnalyzer can then query ROSA
to see if a compromised state can be reached from the initial
state of objects and messages.

As an example, suppose that there is a program that can
execute the following system calls in any order provided that
each system call is only executed once:

1) open() for read-only access using no privilege
2) setuid() with CAP_SET_UID privilege
3) chown() with CAP_CHOWN privilege; the user ID value

is unconstrained, but the group ID value must be 41.
4) chmod() with no privilege
The user wants to know if the program can open the

file /etc/passwd, which has owner 40 and group 41, for
reading. The process currently has effective, real, and saved
user and group IDs that do not match the file’s owner and
group.

Figure 2 shows the initial state for this query. Note that the
arguments to chmod() turn on all permissions on a file (an
attacker would want to make a file as accessible as possible,
and the arguments to chmod() do not affect which privileges
are needed for chmod() to succeed). Note also that various
arguments to system calls e.g., the file identifier and owner
arguments to chown(), are specified as −1 which tells ROSA
that they are wildcard arguments.

Next, the user specifies a pattern representing the state
for which she is looking. This is any state where the file
object (Object ID 3) is in the read set of the process.
Figure 3 shows that we are looking for a term (denoted by
Z:Configuration) that represents the state for which to
search. As we do not care if the attacker changes the user
and group IDs of the process, they are left as variables (A

4



(search in UNIX :
< 1 : Process | euid : 10 , ruid : 11 , suid : 12 ,

egid : 10 , rgid : 11 , sgid : 12 ,
state : run ,
rdfset : empty , wrfset : empty >

< 2 : Dir | name : "/etc" ,
perms : r w x r w x r w x ,
inode : 3 , owner : 40 , group : 41 >

< 3 : File | name : "/etc/passwd" ,
perms : - - - - - - - - - ,
owner : 40 , group : 41 >

< 4 : User | uid : 10 >
open(1,3,r - -,empty)
setuid(1,-1,CapSetuid)
chown(1,-1,-1,41,CapChown)
chmod(1,-1,r w x r w x r w x,empty)

Fig. 2: ROSA Start State Example

through F ) with no constraints. Putting it all together, we get
the Maude search command in Figure 4.

For this example, ROSA finds the following solution, indi-
cating that the process can put the system into the compro-
mised state:

• The process successfully uses chown() to change the
file’s owner to match the effective user ID of the process.

• The process then uses chmod() to change the permis-
sion bits of the file to make it readable by the owner.

• The process opens the file.
A limitation of ROSA is that the user must specify the

number of times that an attacker can use a given system call.
We find this limitation acceptable. Many attacks do not use
a particular system call many times; they merely use a few
system calls with the necessary privileges [17], [18], [15].

VI. IMPLEMENTATION

We implemented ChronoPriv as an LLVM [19] 3.7.1 In-
termediate Representation (IR) pass which adds code to each
basic block to record the number of IR instructions executed
dynamically within the block, the permitted privilege sets
available when each basic block executes, and the user/group
ID credentials. ChronoPriv omits unreachable instructions
in its instruction counts as executing an unreachable
instruction terminates the program [20].

We implemented ROSA using 1,151 lines of Maude code
with the Full-Maude system [12] on Maude 2.7. ROSA cur-
rently models simple processes and threads, files, a file system
with a single level of directories, and TCP sockets. We also
built a simple test suite for ROSA that verifies that a subset of

=>* Z:Configuration
< 1 : Process | euid : A:Int , ruid : B:Int ,

suid : C:Int ,
egid : D:Int , rgid : E:Int ,
sgid : F:Int , state : G:procState ,
rdfset : H:Set{Int} ,
wrfset : I:Set{Int} >

such that (3 in G:Set{Int}) .)

Fig. 3: ROSA End State Example

(search in UNIX :
< 1 : Process | euid : 10 , ruid : 11 , suid : 12 ,

egid : 10 , rgid : 11 , sgid : 12 ,
state : run ,
rdfset : empty , wrfset : empty >

< 2 : Dir | name : "/etc" ,
perms : r w x r w x r w x ,
inode : 3 , owner : 40 , group : 41 >

< 3 : File | name : "/etc/passwd" ,
perms : - - - - - - - - - ,
owner : 40 , group : 41 >

< 4 : User | uid : 10 >
open(1,3,r - -,empty)
setuid(1,-1,CapSetuid)
chown(1,-1,-1,41,CapChown)
chmod(1,-1,r w x r w x r w x,empty)
=>* Z:Configuration
< 1 : Process | euid : A:Int , ruid : B:Int ,

suid : C:Int ,
egid : D:Int , rgid : E:Int ,
sgid : F:Int , state : G:procState ,
rdfset : H:Set{Int} ,
wrfset : I:Set{Int} >

such that (3 in G:Set{Int}) .)

Fig. 4: ROSA Query

the system calls that it supports exhibit the expected behavior
for privileged and unprivileged operation.

ROSA supports system calls for processes (setuid,
seteuid, setresuid, setgid, setegid, setres-
gid, kill), files and directories (open, chmod, fchmod,
chown, fchown, unlink, rename), and TCP sockets
(socket, bind, connect). ROSA models operations that
modify the effective, real, and saved user ID and group ID
values of a process as these are used by the Linux access
controls [2]. It does not model the file system ID feature of
Linux [2] as that feature is seldom used and not applicable to
other Unix-like systems. ROSA only supports TCP sockets and
only a subset of socket operations; adding support for other
socket features is straightforward. ROSA also lacks support
for system calls that create new threads and processes and the
exec() family of system calls; the attacks that we model do
not rely on using these system calls.

ROSA does not yet model Linux namespaces or system
calls that modify the file system namespace e.g., chroot(),
mount(), and clone(). While it supports system calls that
remove links to files e.g., unlink() and rename(), it does
not support system calls, such as creat() and link(),
that create new files and new links to existing files. It also
lacks support for newer system calls such as openat(). Even
so, ROSA can model powerful attacks that steal and corrupt
sensitive data stored in files, masquerade as critical services,
and disrupt availability of critical system services.

VII. SECURITY EVALUATION

We now use PrivAnalyzer to evaluate the security of Linux
applications that execute as root. We then refactor these appli-
cations to improve their security posture and use PrivAnalyzer
to measure the improvement.

A. Modeled Attacks

As Table I states, we model the following attacks:

5



TABLE I: Modeled Attacks

Attack Description
Ê Read from /dev/mem to steal application data
Ë Write to /dev/mem to corrupt application data
Ì Bind to a privileged port to masquerade as a server
Í Send a SIGKILL signal to kill the sshd server

1) Reading /dev/mem: Opening the /dev/mem device
file for reading allows a process to read any memory
location on the system [21], allowing the process to read
any data stored within any process on the system.

2) Writing /dev/mem: Opening /dev/mem for writing
allows a compromised process to alter the data within
any process.

3) Binding to a privileged port: Binding a socket to a
privileged TCP port allows a compromised process to
masquerade as a trusted server (e.g., the remote login
server).

4) Sending SIGKILL to a critical server: Sending signals
to a system-owned server permits an attack to disrupt the
availability of system services. We model the sending of
a signal to a server owned by another user.

As Section III describes, our attack model assumes that an
exploited vulnerability, if it exists within the program, permits
an attacker to enable any privilege that is in the process’s
permitted privilege set and to use that privilege with any
system call used by the application. This attack model permits
sophisticated attacks such as code-reuse attacks that misuse
indirect control transfer instructions to redirect execution to
any of the system calls available to the program [18], [22],
[23]. To model such attacks with ROSA, we identified the
system calls used by the application and created, for each
attack, an input file to ROSA that contains the processes and
files needed to perform the attack and the list of system calls
that the attack can utilize.

As the programs in our evaluation reduce their maximum
privilege sets during execution, the possible privileges that an
attack can use changes over time. We used ChronoPriv to
record a process’s real, effective, and saved user ID and group
ID along with privileges sets as the Linux access controls use
the effective privileges, user IDs, and group IDs to decide
if an operation, such as opening a file, can succeed [2]. We
therefore created, for each possible combination of privilege
sets and IDs, an input file that permits any system call to use
the entire maximum privilege set and asked ROSA if, with
those privileges and IDs, an attack was possible.

B. Test Programs

We use the test programs from Hu et al.’s AutoPriv
project [11]. These programs, described in Table II, typically
run as the root user and are examples of different types of
privileged programs (some are network servers; others are
setuid root utilities). Hu et al. [11] modified these programs to
add calls to priv_raise and priv_lower around system
calls or library function calls that need privileges. We installed

TABLE II: Programs for Experiments

Program Version SLOC Description
thttpd 2.26 8,922 Small single-process web server
passwd 4.1.5.1 50,590 Utility to change user passwords
su 4.1.5.1 50,590 Utility to log in as another user
ping s20121221 12,202 Test reachability of remote hosts
sshd 6.6p1 83,126 Login server with encrypted sessions

the programs so that they start up with the correct permitted
set instead of starting up as a setuid root executable.

We used sloccount [24] to count the lines of C, C++ and
assembly code (excluding comments) in each test program. For
passwd and su, we counted the lines of code in the entire
shadow utility suite. For sshd, we counted the lines of code
in the whole OpenSSH suite. We ran all experiments on a
64-bit Ubuntu 16.04 system.

We compiled the test programs with PrivAnalyzer with
ChronoPriv enabled. The compiler inserts calls to priv_-
remove() to remove dead privileges, inserts a prctl()
call [6] into the program to disable kernel backward compat-
ibility features (such as enabling privileges in the effective
set when the process’s effective user ID is zero), and adds
our dynamic instruction counting instrumentation into the
program. We ran each program as follows: for ping, we
configured it to send requests 10 times to the localhost network
interface using the -c 10 flag. For passwd, we ran it to
change the current user’s password. For su, we ran it to
execute the ls program as another user. For thttpd, we
used ApacheBench [25] with concurrency level 1 and request
number 1 to fetch one 1 MB file. For sshd, we started it
in the foreground with the -d flag and ran scp to fetch one
1 MB file stored in another user’s account.

The Privileges column of Table III describes all the privilege
set combinations observed by ChronoPriv’s dynamic analy-
sis when we executed each program, starting with the full
privilege set available to the program when it starts execution
and ending with the smallest privilege set upon program exit.
Table III also presents the real, effective, and saved UIDs and
GIDs observed with each privilege set in columns UID and
GID respectively. UID 1000 corresponds to the user that starts
the execution of the program. There is another regular user in
the system with UID 1001. For su, this UID’s username is
the username argument to the program; for sshd, user 1000
starts the program and runs scp to transfer files from user
1001. The second column of Table III provides a short name
for the combination of privileges and effective, real, and saved
UID/GID values. For every attack, we use ROSA to analyze
the attack under each combination of privileges and process
credentials listed in Table III.

C. Efficacy Evaluation

Table III summarizes the results of our analysis. For each
program, the Vulnerability column of Table III shows whether
the attacks we modeled (summarized in Table I) were suc-
cessful. To evaluate how long each program spends potentially
vulnerable to a particular privilege escalation attack, we ran

6



TABLE III: Security Efficacy Results. A 4 denotes vulnerability to an attack and 8 denotes invulnerability to an attack.
Column Name shows a short name for each combination of privileges and process credentials.

Program Name Privileges UID GID Dynamic Vulnerability
ruid, euid, suid rgid, egid, sgid Instruction Count 1 2 3 4

passwd

passwd priv1 CapDacReadSearch,CapDacOverride,
CapSetuid,CapChown,CapFowner

1000,1000,1000 1000,1000,1000 2,654 (3.81%) 4 4 8 4

passwd priv2 CapSetuid,CapDacOverride,CapChown,
CapFowner

0,0,0 1000,1000,1000 43 (0.06%) 4 4 8 4

passwd priv3 CapSetuid,CapDacOverride,CapChown,
CapFowner

1000,1000,1000 1000,1000,1000 41,255 (59.15%) 4 4 8 4

passwd priv4 CapChown,CapFowner,CapDacOverride 0,0,0 1000,1000,1000 25,630 (36.75%) 4 4 8 8
passwd priv5 (empty) 0,0,0 1000,1000,1000 162 (0.23%) 8 8 8 8

ping
ping priv1 CapNetRaw,CapNetAdmin 1000,1000,1000 1000,1000,1000 194 (1.36%) 8 8 8 8
ping priv2 CapNetAdmin 1000,1000,1000 1000,1000,1000 204 (1.43%) 8 8 8 8
ping priv3 (empty) 1000,1000,1000 1000,1000,1000 13,844 (97.21%) 8 8 8 8

sshd

sshd priv1 CapChown,CapDacOverride,
CapDacReadSearch,CapKill,CapSetgid,
CapSetuid,CapNetBindService,
CapSysChroot

1000,1000,1000 1000,1000,1000 196,181 (0.31%) 4 4 4 4

sshd priv2 CapChown,CapDacOverride,
CapDacReadSearch,CapKill,
CapSetgid,CapSetuid,CapSysChroot

1000,1000,1000 1000,1000,1000 62,374,249 (98.94%) 4 4 8 4

sshd priv3 CapChown,CapDacOverride,
CapDacReadSearch,CapKill,
CapSetgid,CapSetuid,CapSysChroot

1001,1001,1001 1001,1001,1001 468,197 (0.74%) 4 4 8 4

sshd priv4 CapChown,CapDacOverride,
CapDacReadSearch,CapKill,
CapSetgid,CapSetuid,CapSysChroot

1000,1000,1000 1001,1001,1001 1,738 (0.00%) 4 4 8 4

su

su priv1 CapDacReadSearch,CapSetgid,
CapSetuid

1000,1000,1000 1000,1000,1000 38,880 (82.10%) 4 4 8 4

su priv2 CapSetgid,CapSetuid 1000,1000,1000 1000,1000,1000 2,449 (5.17%) 4 4 8 4
su priv3 CapSetgid,CapSetuid 1000,1000,1000 1001,1001,1001 133 (0.28%) 4 4 8 4
su priv4 CapSetuid 1000,1000,1000 1001,1001,1001 82 (0.17%) 4 4 8 4
su priv5 CapSetuid 1001,1001,1001 1001,1001,1001 43 (0.09%) 4 4 8 4
su priv6 (empty) 1001,1001,1001 1001,1001,1001 5,768 (12.18%) 8 8 8 8

thttpd

thttpd priv1 CapChown,CapSetgid,CapSetuid,
CapNetBindService,CapSysChroot

1000,1000,1000 1000,1000,1000 323 (0.00%) 4 4 4 4

thttpd priv2 CapSetgid,CapNetBindService,
CapSysChroot

1000,1000,1000 1000,1000,1000 4,685,943 (9.82%) 4 8 4 8

thttpd priv3 CapSetgid,CapNetBindService 1000,1000,1000 1000,1000,1000 361 (0.00%) 4 8 4 8
thttpd priv4 CapSetgid 1000,1000,1000 1000,1000,1000 7,199 (0.02%) 4 8 8 8
thttpd priv5 (empty) 1000,1000,1000 1000,1000,1000 43,008,606 (90.16%) 8 8 8 8

each instrumented program created by ChronoPriv with the
sample inputs described in Section VII-B and recorded the
number of LLVM instructions executed with each privilege
set and IDs. Table III records the results in the Dynamic
Instruction Count column. The results in Table III show that
solely reducing the available Linux privileges helps reduce
vulnerability to attacks which bind to a privileged port (Attack
3). However, it often fails to mitigate the other attacks.
ping is not vulnerable to any attack we modeled for all

its executed instructions. It needs CAP_NET_RAW to call
socket with SOCK_RAW to create a raw socket. It does
this only once at the very beginning of the program, allow-
ing ping to drop CAP_NET_RAW early in its execution. It
also needs CAP_NET_ADMIN to use the SO_DEBUG and
SO_MARK options in setsockopt in case the -d or -m
flags are specified on the command line. This is done in a
setup function also executed early during program execution.
Therefore, ping can drop all its privileges very early.

Similar to ping, thttpd also uses privileges early in its
execution (e.g., to bind to a privileged port and to set the
server’s root directory). After all the configuration work is
done, thttpd drops all its privileges.

sshd is vulnerable to attacks 1, 2, and 4 for its entire
execution. It drops CAP_NET_BIND_SERVICE after binding
to a privileged port but retains all its other privileges. The
problem is twofold. First, some of sshd’s signal handlers use
privileges. As signal handlers can be called at any time, any
privileges they use remain live during execution [11]. Second,
we believe that implementation limitations within the AutoPriv
compiler are also responsible. AutoPriv [11] uses a conserva-
tively correct call graph when propagating information about
privilege use inter-procedurally. When sshd creates a child
process to handle a client connection, the child process enters a
loop that continually reads and processes data from the client.
The privileges remain live during this loop. We have found an
indirect function call within this loop. Since AutoPriv creates
an over-approximation of the targets of the indirect function
call [11], it probably thinks that all the functions which raise
privileges are targets of this indirect call and, consequently,
keeps these privileges alive during the loop. The privileges are
dead after the loop, but sshd doesn’t exit the loop until the
client connection closes. A more accurate call graph analysis
may improve AutoPriv’s ability to identify when privileges
can be safely removed using priv_remove().

7



TABLE IV: Lines of Code Changed for Refactored Programs

shadow library code passwd.c su.c
Added 7 23 35
Deleted 76 13 6

The passwd program is vulnerable to attacks on /de-
v/mem and our denial of service attack (attacks 1, 2, and
4) for 63% of its execution. passwd needs CAP_DAC_-
READ_SEARCH to retrieve the user’s password entry from
the /etc/shadow password database using getspnam().
It also uses CAP_SETUID to call setuid(0) to set its real
and saved user ID to root to ignore unexpected signals (Linux
requires a process’s effective or real UID to match either
the real or saved UID of a target process when sending a
signal [2]). The passwd program then needs CAP_DAC_-
OVERRIDE so that it can replace the old shadow database
with a new one and to lock a lock file, preventing concurrent
executions of the passwd program from interfering with each
other. It needs this privilege because, as written, the passwd
program makes minimal assumptions about which user owns
the /etc directory and the /etc/shadow file (it explicitly
uses stat() to find the owner of /etc/shadow and then
uses chown() to ensure the new /etc/shadow file it
creates is owned by the same user). CAP SETUID is kept for
63% of passwd’s execution and CAP DAC OVERRIDE is
used near the end of the program, so the program is vulnerable
to attacks 1, 2, and 4 for over half its execution.

Similar to passwd, su also needs CAP_DAC_READ_-
SEARCH to call getspnam() to read passwords from the
/etc/shadow shadow password database. If the operating
system has a sulog file, su then needs CAP_SETGID to
change the effective group ID to the group ID of sulog so
that su can write to the sulog file. The su program then
needs CAP_SETUID and CAP_SETGID to change the current
process’s user IDs, groups IDs, and supplementary group list
to the IDs of the target user to which it is switching. These two
operations occur very late in execution, and this is why su is
vulnerable to attacks 1, 2, and 4 for 88% of its execution.

D. Security Refactoring Process

The results in Table III show that simply dropping Linux
privileges when no longer needed may not suffice. While
ping is invulnerable to all the attacks we modeled and
thttpd is invulnerable to all attacks for more than 90% of its
execution, passwd, su and sshd remain vulnerable to most
of the attacks for most of their execution time. PrivAnalyzer
reveals the similarity among these programs; they retain pow-
erful privileges until late in their execution. This observation
led us to investigate whether we could improve their resistance
to privilege escalation by refactoring their code. We chose
two of the programs, passwd and su, and we re-evaluated
their privilege use and vulnerability under our attack model
with our tool. We chose these two programs because they are
relatively small but still use powerful Linux privileges, such
as CAP_SETUID and CAP_CHOWN. We describe our results

for each program below. We refactored the versions of the two
programs that use priv_raise and priv_lower (not the
original versions that run as root). Our refactoring requires
very minor source code changes. Table IV shows the amount
of source code we changed.

1) Refactored passwd: As Table III shows, CAP_SE-
TUID is available for 63% of passwd’s execution, and
CAP_OWNER, CAP_FOWNER, and CAP_DAC_OVERRIDE are
available for more than 99% of executed instructions. These
four privileges are extremely powerful. With CAP_SETUID,
a process can change its effective user ID to match the owner
of any file. It can then change the file’s permission bits and,
subsequently, open the file for reading and writing without
using any other privileges [2]. CAP_SETUID also allows a
process to change its real or effective user ID to match the
real or saved user ID of a victim process, allowing it to send
a SIG_KILL signal to the victim [2]. With CAP_OWNER,
a process can change a file’s owner to be any user. With
CAP_FOWNER, a process can change the permission bits of
any file. With CAP_DAC_OVERRIDE, a process can gain read,
write, and execute access to any file. We aimed to reduced the
number of instructions executed with these four privileges.

We devised two changes to passwd to permit it to remove
privileges earlier in execution. First, we noticed that, when
using privileges, passwd can call setuid() much earlier
in its execution (namely, after it has determined the real UID
of the user that executed it). Moving the setuid() call to an
earlier point allows the process to drop CAP_SETUID earlier.

Second, allowing passwd to execute with an effective
UID of zero still allows it to open /dev/mem as the root
user owns many system files, including device files and the
shadow database files, on Ubuntu. This allows passwd to
read and write /dev/mem even though we have reduced its
privilege use. However, there is no reason for root to own the
shadow database. As Section VII-C states, the shadow suite
source code does not assume that root owns the password
database. Since these shadow-related files are located in the
/etc directory, we can create a new special user named etc
(UID number 998 in our case) and set the owner of the /etc
directory and the shadow password file to be etc. By doing
so, passwd can change its effective UID to etc and effective
GID to shadow (the group owner of the shadow file on Ubuntu
16.04) to eliminate the use of CAP_OWNER, CAP_FOWNER,
and CAP_DAC_OVERRIDE, which are responsible for up-
dating the password database. To ignore unexpected signals,
passwd can set its real and saved user IDs to etc as well.

We ran PrivAnalyzer on the refactored passwd program
with these changes. Our results in Table V show that passwd
is invulnerable to all of our modeled attacks for 96% of
its execution. Going back to the results in Table III, we
see that using passwd_priv4 instead of passwd_priv3
decreases the vulnerability of passwd. In particular, Priv-
Analyzer determines that dropping CAP_SETUID, i.e. the
only privilege that makes the two sets differ as shown in
Table III, makes one of the four attacks infeasible. We believe
that highlighting these changes in privilege sets would help

8



TABLE V: Results for Refactored Programs. 4 denotes vulnerability to an attack, 8 denotes invulnerability to the attack, and
� denotes that ROSA timed out for the attack/privilege set combination.

Program Name Privileges UID GID Dynamic Instruction Vulnerability
ruid, euid, suid rgid, egid, sgid Count 1 2 3 4

passwd

passwdRef priv1 CapSetuid,CapSetgid 1000,1000,1000 1000,1000,1000 2,633 (3.82%) 4 4 8 4
passwdRef priv2 CapSetuid,CapSetgid 998,998,1000 1000,1000,1000 42 (0.06) 4 4 8 4
passwdRef priv3 CapSetgid 998,998,1000 1000,1000,1000 49 (0.07%) 4 8 8 8
passwdRef priv4 CapSetgid 998,998,1000 1000,42,1000 42 (0.06%) 4 � 8 8
passwdRef priv5 empty 998,998,1000 1000,42,1000 66,165 (95.99%) 8 8 8 8

su

suRef priv1 CapSetuid,CapSetgid 1000,1000,1000 1000,1000,1000 264 (0.56%) 4 4 8 4
suRef priv2 CapSetuid,CapSetgid 1000,998,1001 1000,1000,1000 42 (0.09%) 4 4 8 4
suRef priv3 CapSetgid 1000,998,1001 1000,1000,1000 42 (0.09%) 4 � 8 8
suRef priv4 CapSetgid 1000,998,1001 1000,998,1001 126 (0.27%) 4 � 8 8
suRef priv5 empty 1001,1001,1001 1001,1001,1001 5,766 (12.21%) 8 8 8 8
suRef priv6 empty 1000,998,1001 1000 998,1001 40,951 (86.69%) � � 8 8
suRef priv7 empty 1000,998,1001 1001,1001,1001 43 (0.09%) � � 8 8

developers identify powerful privileges and help guide them
in refactoring their programs to reduce privilege use.

2) Refactored su: su is vulnerable also because CAP_-
SETUID is live for too long. We observed that the process
determines the target user early during execution. Therefore,
we can modify su to change the supplementary group ID list
much earlier and to use CAP_SETUID and CAP_SETGID to
set the saved user ID and saved group ID to the target user
ID and group ID, respectively. When su needs to switch user
IDs and group IDs, it can call setresuid() and setres-
gid() to change the effective user ID and group ID to the
saved user ID and group ID without using privileges [2]. For
the sulog file, we can change its owner to etc and set the
effective group ID to etc when CAP_SETGID is available.
In this way, su can drop these two privileges much earlier.
We can also eliminate CAP_DAC_READ_SEARCH by setting
the effective user ID to the owner of /etc/shadow when
CAP_SETUID is available. The change of the effective user
ID and saved user ID doesn’t affect the flow of the program
because all the identification work is done by checking the
real user ID, which remains unchanged.

We used PrivAnalyzer to measure the refactored su’s secu-
rity improvement. The results in Table V show that this new
su cannot launch our four modeled attacks for at least 12% of
its execution. Furthermore, since ROSA is unable to deliver a

Fig. 5: Search time for passwd.

verdict on attacks 1 and 2 for privilege sets 6 and 7 within our
5 hour limit, we assume that our refactored su is invulnerable
to all the attacks for an additional 87% of its execution time.
This is because, as Section VIII discusses, ROSA’s analysis
often takes longer when attacks are impossible as ROSA must
search the entire state space. We believe our refactored su is
invulnerable for nearly 99% of its execution.

Looking at Table III, we see that su is vulnerable with all
the privilege sets except the empty one. The last privilege to
remain live is CAP_SETUID (Table III). Similar to passwd,
the PrivAnalyzer results help identify which privilege in-
creases the exposure to privilege escalation, helping guide the
developer on where to focus refactoring efforts.

E. Security Refactoring Lessons

Our refactoring work provides two key insights into writing
privileged applications on Linux:

a) Change Credentials Early: We observed that many
privileged operations in privileged programs simply require
that a process running as one user create or manipulate
resources e.g., processes and files, owned by one other user.
However, Linux privileges such as CAP_DAC_OVERRIDE
allow a process to manipulate files owned by any user.

A better approach is to use CAP_SETUID and CAP_SET-
GID to provide the process with two sets of credentials: one in
the real UID and GID and another in the saved UID and GID.

Fig. 6: Search time for ping.

9



Fig. 7: Search time for sshd.

Fig. 8: Search time for su.

The process can then switch the effective UID/GID between
the real UID/GID and the saved UID/GID without privilege.
This allows privileges such as CAP_SETUID and CAP_-
SETGID to be removed early in execution and often allows
privileges such as CAP_CHOWN, CAP_DAC_READ_SEARCH,
and CAP_DAC_OVERRIDE to be eliminated entirely.

b) Create Special Users for Special Files: On Ubuntu,
root owns many of the system configuration files. Conse-
quently, running as one user provides access to nearly all

Fig. 9: Search time for thttpd.

sensitive system files. For example, a password-changing
program shouldn’t be able to read and write device files, but
it can on Ubuntu. Having different special users own different
files allows privileged programs to configure themselves to
only access the files that they need (as we did by changing
/etc/shadow to be owned by a special etc user).

VIII. PERFORMANCE EVALUATION

We now evaluate the performance of ROSA, PrivAnalyzer’s
bounded model checker, using the programs in Table II. We
perform our experiments on a Dell Precision 3620 workstation
with a 3.6 GHz Intel R© i7-7770 processor, 16 GB of RAM,
and a 1 TB TOSHIBA DT01ACA1 hard disk running Ubuntu
16.04. We use the time system call to report the sum of user
and system time in seconds that ROSA takes to reach a verdict.

We run each test 10 times to compute the average search
time and the standard deviation. Figures 5, 6, 7, 8, and 9
show that, in most of the experiments, ROSA needs less than
2 seconds to reach a verdict. However, in one case (the one in
which su has dropped all of its privileges), ROSA takes almost
40 seconds to decide that su cannot read or write /dev/mem.
We believe this is due to the search space: for attacks like
those on /dev/mem, numerous system calls such as open(),
setresuid(), chown(), and chmod() are relevant. For
attacks that fail, ROSA must determine that all combinations
of executing these system calls does not lead to compromise.
In contrast, fewer system calls are relevant to attacks 3 and
4 which kill off other processes or bind to privileged ports,
providing ROSA a smaller state space to search.

Figures 10 and 11 show ROSA’s performance when ana-
lyzing the refactored passwd and su programs. In general,
ROSA takes longer to reach a verdict for the refactored pro-
grams. For example, ROSA takes almost 12 hours to determine
that the refactored passwd cannot write to /dev/mem when
it executes with privilege set 3 (as Table V shows). There
are cases in which the operating system kills ROSA due to
high memory consumption (3 days of execution), and we do
not get a response. We believe this behavior is due to the
large state space to explore. Attacks 1 and 2 involve a larger

Fig. 10: Search time for refactored passwd.

10



Fig. 11: Search time for refactored su.

number of system calls and UID/GID values. ROSA must try
every combination of UID/GID pairs in each system call to
determine that no combination of process UID/GID settings
and file ownership settings will permit the attack to succeed.
Given how quickly ROSA can find solutions when attacks are
possible, we believe that the attacks are likely to fail when
ROSA cannot return an answer in reasonable time.

IX. RELATED WORK

Zanin et al. [9] propose an automatic tool for evaluating
security policy configurations for SELinux. SELinux [26] is
a system that allows an administrator to specify a set of
rules which the Linux kernel enforces when making access
control decisions. These rules enable the generation of security
policies which are flexible yet difficult for administrators to
reason about. To evaluate the efficacy of an SELinux security
policy configuration, Zanin et al. [9] formalize the semantics of
the configuration constructs and expose the relationships that
occur among the configuration rules. Based on the proposed
formal model entitled SELAC [9], they develop a tool that
decides whether access of a specific object by a given subject
under the configured policy is possible. Zanin et al. propose
a tool [9] that, similar to PrivAnalyzer, can reach verdicts
about the possibility of attacks allowed under a specific set
of configuration rules. However, unlike our work, they do
not quantify the vulnerability window of the system under a
specific configuration. In this work, we show that PrivAnalyzer
can evaluate hypothetical attacks at different points during
the dynamic execution of a program under different sets of
privileges. This evaluation led us to refactor a subset of these
programs and show that we can improve their security.

Chen et al. develop VulSAN [10], a tool that quantifies
the quality of protection offered by mandatory access control
systems. Given an attack objective and the attacker’s initial
resources, VulSAN identifies minimal sets of programs that,
if compromised, can lead to the attack succeeding. VulSAN
maps the security policies and the state of the system to
Prolog facts. VulSAN then generates a graph for each attack
scenario that is modeled. Each path in the graph is a sequence
of different program executions. VulSAN uses the graph to

extract the minimal sets of programs that can lead to the
modeled attack. Although VulSAN can identify chains of
compromises between programs in a system, it cannot identify
the damage that a single program could cause on its own if
exploited. PrivAnalyzer analyzes the behavior of individual
programs to determine whether their use of privileges mitigates
the risks of privilege escalation attacks.

Vijayakumar et al. [27] evaluate the attack surface of a
program, i.e. the program entry points that are accessible to an
adversary. They use the operating system’s Mandatory Access
Control (MAC) policy to automatically separate program data
into two sets: 1) trusted, and 2) adversary controlled data.
Using runtime analysis, they collect the set of entry points
that access objects outside of the constructed trusted set. The
proposed method measures the attackability of a program,
i.e. how likely it is that a program gets attacked in any
way. PrivAnalyzer measures the vulnerability window of a
program to an attack, i.e. how long the program is vulnerable
to a specified attack. While both systems evaluate important
security metrics, the former relies on a MAC scheme and
cannot model dynamic changes of access rights. PrivAnalyzer
evaluates the vulnerability of a program in a discretionary
access control system, accounting for dynamic changes in the
access control policy.

X. FUTURE WORK

Several interesting directions exist for future work. First,
we plan to enhance PrivAnalyzer to model additional operating
system privilege models, allowing us to compare their efficacy.
For example, PrivAnalyzer could model Solaris privileges [28]
and Capsicum [5] and investigate whether they can provide
greater protection than Linux privileges.

Second, we will model additional attacks and defenses.
For example, our current evaluation assumes that attacks
can corrupt application control-flow and data-flow. With en-
hancements to PrivAnalyzer, we can model attacks that are
weakened due to defenses such as control-flow integrity [29]
and code-pointer integrity [30] and determine what types of
attacks such a weakened attacker can perform.

XI. CONCLUSIONS

This paper presented PrivAnalyzer, an automated tool that
measures the risk that privileged programs can pose. PrivAna-
lyzer adds two new components to the AutoPriv compiler [11]:
the ChronoPriv vulnerability analyzer and the ROSA bounded
model checker. Using PrivAnalyzer, we measured the efficacy
of using Linux privileges and showed that enabling, disabling,
and removing privileges from otherwise unmodified applica-
tions does not significantly improve their security posture.
We then refactored two privileged Linux programs to better
leverage Linux privileges and used PrivAnalyzer to measure
the security improvement. From this exercise, we learned two
key approaches for using Linux privileges more effectively.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful feed-
back. This work was funded by NSF award CNS-1463870.

11



REFERENCES

[1] M. E. Russinovich and D. A. Solomon, Microsoft Windows Internals,
Fourth Edition: Microsoft Windows Server(TM) 2003, Windows XP, and
Windows 2000 (Pro-Developer). Redmond, WA, USA: Microsoft Press,
2004.

[2] D. P. Bovet and M. Cesati, Understanding the LINUX Kernel, 2nd ed.
Sebastopol, CA: O’Reilly, 2002.

[3] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson, The
Design and Implementation of the FreeBSD Operating System, 2nd ed.
Addison-Wesley Professional, 2014.

[4] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings,
“Compartmented mode workstation: Prototype highlights,” IEEE Trans.
Softw. Eng., vol. 16, no. 6, pp. 608–618, Jun. 1990.

[5] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for UNIX,” in Proceedings of the 19th USENIX
Conference on Security, ser. USENIX Security’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 3–3.

[6] S. E. Hallyn and A. G. Morgan, “Linux capabilities: Making them work,”
in Proceedings of The Linux Symposium, Ottawa, Canada, July 2008.

[7] linuxcontainers.org, “Linux Containers,” https://linuxcontainers.org/,
[Online; accessed 28-March-2019].

[8] D. Documentation, “Docker,” https://docs.docker.com/engine/security/
security/, [Online; accessed 28-March-2019].

[9] G. Zanin and L. V. Mancini, “Towards a formal model for security
policies specification and validation in the selinux system,” in
Proceedings of the Ninth ACM Symposium on Access Control Models
and Technologies, ser. SACMAT ’04. New York, NY, USA: ACM,
2004, pp. 136–145. [Online]. Available: http://doi.acm.org/10.1145/
990036.990059

[10] H. Chen, N. Li, and Z. Mao, “Analyzing protection quality of
security-enhanced operating systems,” in Proceedings of the 10th
Annual Information Security Symposium, ser. CERIAS ’09. West
Lafayette, IN: CERIAS - Purdue University, 2009, pp. 8:1–8:1.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2788357.2788369

[11] X. Hu, J. Zhou, S. Gravani, and J. Criswell, “Transforming code
to drop dead privileges,” in 2018 IEEE Cybersecurity Development
(SecDev), vol. 00, Sept 2018, pp. 45–52. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SecDev.2018.00014

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude - a High-performance Logical Framework:
How to Specify, Program and Verify Systems in Rewriting Logic. Berlin,
Heidelberg: Springer-Verlag, 2007.

[13] Argus Systems Group, Inc., “Security features programmer’s guide,”
Savoy, IL, September 2001.

[14] Solar Designer, “return-to-libc attack,” August 1997, https://insecure.
org/sploits/linux.libc.return.lpr.sploit.html [Online; accessed 11-March-
2019].

[15] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data Attacks Are Realistic Threats,” in Proceedings of the 14th

USENIX Security Symposium (SEC), Baltimore, MD, 2005, pp. 12–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251398.1251410

[16] N. Provos, “Improving host security with system call policies,” in 12th
USENIX Security Symposium, August 2003.

[17] A. One, “Smashing the Stack for Fun and Profit,” Phrack, vol. 7, Novem-
ber 1996, http://www.phrack.org/issues/49/14.html [Online; accessed 11-
March-2019].

[18] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86),” in Proceedings of the 14th
ACM SIGSAC Conference on Computer and Communications Security
(CCS), Alexandria, VA, October 2007, pp. 552–561.

[19] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO’04. Palo Alto,
CA: IEEE Computer Society, 2004, pp. 75–86. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[20] C. Lattner et al., “LLVM Language Reference Manual,” January 2016.
[Online]. Available: http://releases.llvm.org/3.7.1/docs/LangRef.html

[21] “Linux programmer’s manual: mem(4),” November 1992.
[22] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,

and M. Winandy, “Return-oriented Programming Without Returns,” in
Proceedings of the 17th ACM SIGSAC Conference on Computer and
Communications Security (CCS), Chicago, IL, October 2010.

[23] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of
Fine-Grained Address Space Layout Randomization,” in Proceedings
of the 34th IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, May 2013, pp. 574–588. [Online]. Available:
http://dx.doi.org/10.1109/SP.2013.45

[24] D. A. Wheeler, “SLOCCount Version 2.26,” 2004.
[25] “Apachebench: A complete benchmarking and regression testing suite.

http://freshmeat.net/projects/apachebench/,” July 2003.
[26] S. Smalley, “Configuring the selinux policy,” NSA, Tech. Report,

February 2005.
[27] H. Vijayakumar, J. Schiffman, and T. Jaeger, “Integrity walls: Finding

attack surfaces from mandatory access control policies,” in 7th ACM
Symposium on Information, Computer, and Communications Security
(ASIACCS), May 2012.

[28] J. Mauro and R. McDougall, Solaris Internals: Core Kernel Architecture.
Prentice Hall PTR, 2000.

[29] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,” ACM
Transactions on Information Systems Security, vol. 13, pp. 4:1–
4:40, November 2009. [Online]. Available: http://doi.acm.org/10.1145/
1609956.1609960

[30] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 147–163.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2685048.2685061

12

https://linuxcontainers.org/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
http://doi.acm.org/10.1145/990036.990059
http://doi.acm.org/10.1145/990036.990059
http://dl.acm.org/citation.cfm?id=2788357.2788369
doi.ieeecomputersociety.org/10.1109/SecDev.2018.00014
https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://www.phrack.org/issues/49/14.html
http://dl.acm.org/citation.cfm?id=977395.977673
http://releases.llvm.org/3.7.1/docs/LangRef.html
http://dx.doi.org/10.1109/SP.2013.45
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
http://dl.acm.org/citation.cfm?id=2685048.2685061

	Introduction
	Linux Privileges
	Attack Model
	Maude Background
	Design
	ChronoPriv Vulnerability Analyzer
	ROSA Bounded Model Checker

	Implementation
	Security Evaluation
	Modeled Attacks
	Test Programs
	Efficacy Evaluation
	Security Refactoring Process
	Refactored passwd
	Refactored su

	Security Refactoring Lessons

	Performance Evaluation
	Related Work
	Future Work
	Conclusions
	References

