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Abstract
Microcontroller-based embedded systems are increasingly

used for applications that can have serious and immediate
consequences if compromised—including automobile con-
trol systems, smart locks, drones, and implantable medical
devices. Due to resource and execution-time constraints, C
is the primary language used for programming these devices.
Unfortunately, C is neither type-safe nor memory-safe, and
control-flow hijacking remains a prevalent threat.

This paper presents Silhouette: a compiler-based defense
that efficiently guarantees the integrity of return addresses,
significantly reducing the attack surface for control-flow hi-
jacking. Silhouette combines an incorruptible shadow stack
for return addresses with checks on forward control flow and
memory protection to ensure that all functions return to the
correct dynamic caller. To protect its shadow stack, Silhouette
uses store hardening, an efficient intra-address space isolation
technique targeting various ARM architectures that leverages
special store instructions found on ARM processors.

We implemented Silhouette for the ARMv7-M architecture,
but our techniques are applicable to other common embed-
ded ARM architectures. Our evaluation shows that Silhouette
incurs a geometric mean of 1.3% and 3.4% performance over-
head on two benchmark suites. Furthermore, we prototyped
Silhouette-Invert, an alternative implementation of Silhouette,
which incurs just 0.3% and 1.9% performance overhead, at
the cost of a minor hardware change.

1 Introduction

Microcontroller-based embedded systems are typically de-
veloped in C, meaning they suffer from the same memory
errors that have plagued general-purpose systems [4, 59, 67].
Indeed, hundreds of vulnerabilities in embedded software
have been reported since 2017.1 Exploitation of such systems

∗Work done when the author was visiting the University of Rochester.
1Examples include CVE-2017-8410, CVE-2017-8412, CVE-2018-3898,

CVE-2018-16525, CVE-2018-16526, and CVE-2018-19417.

can directly lead to physical consequences in the real world.
For example, the control system of a car is crucial to pas-
senger safety; the security of programs running on a smart
lock is essential to the safety of people’s homes. As these
systems grow in importance,2 their vulnerabilities become
increasingly dangerous [40, 54, 61].

Past work on control-flow hijacking attacks highlights the
need to protect return addresses, even when the software em-
ploys other techniques such as forward-edge control-flow
integrity (CFI) [19, 20, 25, 29, 37]. Saving return addresses
on a separate shadow stack [18] is a promising approach, but
shadow stacks themselves reside in the same address space
as the exploitable program and must be protected from cor-
ruption [18, 25]. Traditional memory isolation that utilizes
hardware privilege levels can be adapted to protect the shadow
stack [70], but it incurs high overhead as there are frequent
crossings between protection domains (e.g., once for every
function call). Sometimes information hiding is used to ap-
proximate intra-address space isolation as it does not require
an expensive context switch. In information hiding, security-
critical data structures are placed at a random location in
memory to make it difficult for adversaries to guess the ex-
act location [43]. Unfortunately, information hiding is poorly
suited to embedded systems as most devices have a limited
amount of memory that is directly mapped into the address
space—e.g., the board used in this work has just 384 KB of
SRAM and 16 MB of SDRAM [66].

This paper presents Silhouette: an efficient write-protected
shadow stack [28] system that guarantees that a return in-
struction will always return to its dynamic legal destination.
To provide this guarantee, Silhouette combines a shadow
stack, an efficient intra-address space isolation mechanism
that we call store hardening, a Control-Flow Integrity [1]
implementation to protect forward-edge control flow, and a
corresponding Memory Protection Unit (MPU) configuration
to enforce memory access rules. Utilizing the unprivileged
store instructions on modern embedded ARM architectures,

2Both Amazon and Microsoft have recently touted operating systems
targeting microcontroller-based embedded devices [16, 52]



store hardening3 creates a logical separation between the
code and memory used for the shadow stack and that used
by application code. Unlike hardware privilege levels, store
hardening does not require expensive switches between pro-
tection domains. Also, unlike the probabilistic protections of
information hiding, protections based on store hardening are
hardware-enforced. Further, the forward-edge control-flow
protection prevents unexpected instructions from being ex-
ecuted to corrupt the shadow stack or load return addresses
from illegal locations. Finally, the MPU configuration en-
forces memory access rules required by Silhouette.

We focus on the ARMv7-M architecture [12] given the
architecture’s popularity and wide deployment; however,
our techniques are also applicable to a wide range of
ARM architectures, including ARMv7-A [11] and the new
ARMv8-M Main Extension [13]. We also explore an alterna-
tive, inverted version of Silhouette that promises significant
performance improvements at the cost of minor hardware
changes; we call this version Silhouette-Invert. We summa-
rize our contributions as follows:

• We built a compiler and runtime system, Silhouette, that
leverages store hardening and coarse-grained CFI to pro-
vide embedded applications with efficient intra-address
space isolation and a protected shadow stack.

• We have evaluated Silhouette’s performance and code
size overhead and found that Silhouette incurs a geo-
metric mean of 1.3% and 3.4% performance overhead,
and a geometric mean of 8.9% and 2.3% code size over-
head on the CoreMark-Pro and the BEEBS benchmark
suites, respectively. We also compare Silhouette to two
highly-related defenses: RECFISH [70] and µRAI [5].

• We prototyped and evaluated the Silhouette-Invert vari-
ant and saw additional improvements with an average
performance overhead measured at 0.3% and 1.9% by
geometric mean and code size overhead measured at
2.2% and 0.5%, again, on CoreMark-Pro and BEEBS.

In addition to the above contributions, we observe that store
hardening could be extended to protect other security-critical
data, making Silhouette more flexible than other approaches.
For example, Silhouette could be extended to isolate the sen-
sitive pointer store for Code-Pointer Integrity (CPI) [43]. Sim-
ilarly, it could be used to protect kernel data structures within
an embedded operating system (OS) such as Amazon FreeR-
TOS [16].

2 ARMv7-M Architecture

Our work targets the ARMv7-M architecture [12]. We briefly
summarize the privilege and execution modes, address space

3uXOM [44] independently developed a similar technique for imple-
menting execute-only memory. We compare the implementation differences
between store hardening and that of uXOM in Section 6.2.

layout, and memory protection features of the ARMv7-M.

Embedded Application Privilege Modes ARMv7-M sup-
ports the execution of both privileged and unprivileged code.
Traps, interrupts, and the execution of a supervisor call (SVC)
instruction switches the processor from unprivileged mode
to privileged mode. Unlike server systems, embedded appli-
cations often run in privileged mode. Such applications also
frequently use a Hardware Abstraction Layer (HAL) to pro-
vide a software interface to device-specific hardware. HAL
code is often generated by a manufacturer-provided tool (e.g.,
HALCOGEN [68]), is linked directly into an application, and
runs within its address space.

Address Space ARMv7-M is a memory-mapped architec-
ture, lacking support for virtual memory and using a 32-bit
address space. While the exact layout varies between hard-
ware, the address space is generally divided into 8 sections.
The Code section holds code and read-only data; it usually
maps to an internal ROM or flash memory. An SRAM section
along with two RAM sections are used to store runtime muta-
ble data, e.g., the stack, heap, and globals. The Peripheral
and two Device regions map hardware timers and I/O device
registers. The System region maps system control registers
into the processor’s physical address space.

A security-critical subsection of System is the System Con-
trol Space, which is used for important tasks such as system
exception management. It also contains the address space for
the Memory Protection Unit (MPU) [12]. Since ARMv7-M is
a memory-mapped architecture, all of the security-critical reg-
isters, such as MPU configuration registers, are also mapped
to the System region.

Memory Protection Unit An ARMv7-M-based device can
optionally have a Memory Protection Unit. The MPU is a
programmable memory protection component that enforces
memory access permissions [9, 12]. The MPU allows privi-
leged software to create a set of memory regions which cover
the physical address space; the permission bits on each region
dictate whether unprivileged and privileged memory accesses
can read or write the region. The number of configurable MPU
regions is implementation specific, e.g., the target device in
this paper supports 8 regions [65]. The memory regions con-
figured by the MPU do not need to exactly match the default
memory regions described in the Address Space paragraph.
The size of each MPU-configured region varies from 32 bytes
to 4 GB.

Currently, the MPU design makes several assumptions
about how memory access permissions are to be configured.
First, it assumes that privileged software should have as many
or more access rights to memory than unprivileged code. Con-
sequently, the MPU cannot be configured to give unprivileged
code more access to a memory region than privileged code.



Second, the MPU assumes that certain memory regions—e.g.,
the System region—should not be executable, and it prevents
instruction fetches from these regions regardless of the MPU
configuration. Third, the MPU design assumes that unprivi-
leged code should not be able to reconfigure security-critical
registers on the processor. Therefore, the MPU will prevent
unprivileged code from writing to memory regions that in-
clude memory-mapped device registers, such as those that
configure the MPU.

3 Threat Model and System Assumptions

While embedded code can be conceptually divided into appli-
cation code, libraries, kernel code, and the hardware abstrac-
tion layer, there is often little distinction at runtime between
these logical units. Due to performance, complexity, and real-
time considerations, it is quite common for all of this code
to run in the same address space, without isolation, and with
the same privilege level [24, 42, 44]. For example, under the
default configuration of Amazon FreeRTOS (v1.4.7), all code
runs as privileged in ARMv7-M [16]. These embedded char-
acteristics heavily inform our threat model and the design
decisions for Silhouette.

Our threat model assumes a strong adversary that can ex-
ploit a memory error in the application code to create a
write-what-where style of vulnerability. That is, the adver-
sary can attempt to write to any location in memory at any
time. The adversary’s goal is to manipulate the control flow
of a program by exploiting the aforementioned memory error
to overwrite memory (e.g., a return address). Non-control
data attacks [21, 39] are out of scope of this work. Further,
we assume the adversary has full knowledge of the memory
contents and layout; we do not rely on information hiding for
protection. Our threat model is consistent with past work on
defenses against control-flow hijacking.

We assume the target system runs a single bare-metal appli-
cation statically linked with all the library code and the hard-
ware abstraction layer (HAL)—the latter provides a device-
specific interface to the hardware. We assume the HAL is part
of the Trusted Computing Base (TCB) and is either compiled
separately from the application code or annotated, allowing
Silhouette to forgo transformations on the HAL that might
preclude privileged hardware operations. Similarly, we as-
sume that exception handlers are part of the TCB. Further,
we assume the whole binary runs in privileged mode for the
reasons mentioned previously.

Finally, we assume the target device includes a memory
protection unit (or similar hardware mechanism) for config-
uring coarse-grained memory permissions, i.e., Silhouette is
able to configure read, write, and execute permissions for five
regions (summarized in Section 6.4) of the address space.

4 Intra-Address Space Isolation

Many security enforcement mechanisms rely on intra-address
space isolation to protect security-critical data; in other words,
the defenses are built on the assumption that application code,
under the influence of an attacker, cannot modify security-
critical regions of the address space. For example, defenses
with shadow stacks [18] need a safe region to store copies of
return addresses, and CPI [43] needs a protected region of the
address space to place its safe stack and sensitive pointer store.
Complicating matters, defenses often intersperse accesses to
the protected region with regular application code; the former
should be able to access the protected region while the lat-
ter should not. Consequently, existing mechanisms to switch
between protection domains—e.g., system calls between un-
privileged and privileged mode—are often too inefficient for
implementing these security mechanisms for microcontroller-
based embedded systems. Rather than incur the performance
penalty of true memory isolation, some defenses hide the
security-critical data structures at random locations in the ad-
dress space [24, 43]. Embedded systems have limited entropy
sources for generating random numbers and only kilobytes or
megabytes of usable address space; we do not believe hiding
the shadow stack will be effective on such systems.

We devise a protection method, store hardening, for em-
bedded ARM systems utilizing unique features of a subset
of ARM architectures [11–13], including ARMv7-M. These
architectures provide special unprivileged store instructions
for storing 32-bit values (STRT), 16-bit values (STRHT), and
8-bit values (STRBT). When a program is running in the pro-
cessor’s privileged mode, these store instructions are treated
as though they are executed in unprivileged mode, i.e., the
processor always checks the unprivileged-mode permission
bits configured in the MPU when executing an STRT, STRHT,
or STRBT instruction regardless of whether the processor is ex-
ecuting in privileged or unprivileged mode. We leverage this
feature to create two protection domains. One unprivileged
domain contains regular application code and only uses the
unprivileged STRT, STRHT, and STRBT instructions for writing
to memory. The second privileged domain uses regular (i.e.,
privileged) store instructions. As code from both domains
runs in the same, privileged, processor mode, this method
allows us to enforce memory isolation without costly context
switching.

To completely isolate the data memory used by the un-
privileged and privileged domains, two additional features
are needed. First, there needs to be a mechanism to prevent
unprivileged code from jumping into the middle of privileged
code; doing so could allow unprivileged code to execute a
privileged store instruction with arbitrary inputs. We can use
forward-edge CFI checks to efficiently prevent such attacks.
Second, a trusted code scanner must ensure that the code
contains no system instructions that could be used to modify
important program state without the use of a store instruction.
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Figure 1: Architecture of Silhouette and the Silhouette-Invert Variant

For example, an adversary could use the MSR instruction [12]
to change the value of the main or process stack pointer reg-
isters (MSP and PSP, respectively), effectively changing the
location of the shadow stack and potentially moving it to
an unprotected memory region. We discuss a defense that
leverages these techniques in the next section.

5 Silhouette Design

Silhouette is a compiler and run-time system that leverages
our memory isolation scheme to efficiently protect embed-
ded systems from control-flow hijacking attacks. As Figure 1
shows, Silhouette transforms application code with four new
compiler passes placed after native code generation but before
linking the hardened object code with the hardware abstrac-
tion layer (HAL). We also explore an alternative, inverted
version of these passes that promises significant performance
improvements at the cost of minor hardware changes; we call
this version Silhouette-Invert (see Section 5.5). Silhouette’s
new compiler passes are as follows:

1. Shadow Stack Transformation: The shadow stack
transformation modifies the native code to save return
values on a shadow stack and to use the return value
stored in the shadow stack in return instructions.

2. Store Hardening: The store hardening pass modifies all
store instructions, except those used in the shadow stack
instrumentation and Store-Exclusive instructions [12]
(see Section 5.2 for the reasons), to use variants that
check the unprivileged-mode permission bits.

3. CFI Transformation: The CFI transformation in-
struments indirect function calls and other computed
branches (aside from returns) to ensure that program ex-
ecution follows a pre-computed control-flow graph. Con-
sequently, this instrumentation prevents the execution of
gadgets that could, for example, be used to manipulate
protected memory regions.

4. Privileged Code Scanner: The privileged code scan-
ner analyzes the native code prior to emitting the final
executable to ensure that application code is free of priv-
ileged instructions that an adversary might seek to use
to disable Silhouette’s protections.

In addition to the above transformations, Silhouette em-
ploys mechanisms to prevent memory safety errors from dis-
abling the hardware features that Silhouette uses to provide
its security guarantees. In the context of ARMv7-M, it means
that the MPU cannot be reconfigured to allow unprivileged ac-
cesses to restricted memory regions. Also note that the HAL
library is not transformed with Silhouette as it may contain
I/O functions that need to write to memory-mapped I/O reg-
isters that are only accessible to privileged store instructions.
We also forbid inlining HAL functions into application code.

Moreover, Silhouette specially handles variable-length ar-
rays on the stack and alloca() calls with argument values
that cannot be statically determined by the compiler. For these
two types of memory allocation, Silhouette adopts the method
from SAFECode [31] and SVA [27] that promotes the allo-
cated data from stack to heap. As Section 7.1 explains, such
stack allocations (while rare in C code) can cause stack regis-
ter spills, endangering the integrity of the shadow stack.

5.1 Shadow Stack
In unprotected embedded systems, programs store return ad-
dresses on the stack, leaving return addresses open to corrup-
tion by an adversary. To mitigate such attacks, some compilers
transform code to use shadow stacks. A shadow stack [18]
is a second stack, stored in an isolated region of memory,
on which a program saves the return address. Only the code
that saves the return address should be able to write to the
shadow stack; it should be otherwise inaccessible to other
store instructions in the program. If the shadow stack cannot
be corrupted by memory safety errors, then return addresses
are not corrupted. Furthermore, if the function epilogue uses
the correct return address stored on the shadow stack, then
the function always returns to the correct dynamic call site.

Silhouette’s shadow stack transformation pass modifies
each function’s prologue to save the return address on a
shadow stack and each function’s epilogue to use the shadow
stack return address on function return. A special case to
handle is setjmp/longjmp. setjmp saves the current execu-
tion context to a memory location specified by its argument,
and longjmp recovers the saved context from the specified
memory location as if the execution was just returned from
a previous call to setjmp. Using setjmp/longjmp, a pro-
gram is able to perform non-local indirect jumps that are
challenging to track by a shadow stack. As few programs use
setjmp/longjmp, we refer interested readers to Appendix A



which discusses how Silhouette supports these two functions.
Once the transformation is complete, the program uses a
shadow stack, but the shadow stack is not protected. For that,
Silhouette employs the store hardening pass and the CFI pass.

5.2 Protection via Store Hardening
Silhouette leverages the MPU and the intra-address space
isolation mechanism described in Section 4 to efficiently pro-
tect the shadow stack. This protection is comprised of two
parts. First, during compilation, Silhouette’s store harden-
ing pass transforms all store instructions in application code
from privileged instructions to equivalent unprivileged store
instructions (STRT, STRHT, and STRBT). As discussed previ-
ously, these unprivileged variants always check the MPU’s
unprivileged-mode permission bits. Second, when loading
the program, Silhouette instrumentation configures the MPU
so that the shadow stack is readable and writeable in priv-
ileged mode but only readable in unprivileged mode. This
ensures that store instructions executed in unprivileged mode
and unprivileged stores (STRT, STRHT, and STRBT) executed
in privileged mode cannot modify values on the shadow stack.
Together, these mechanisms ensure shadow stack isolation,
even if the entire program is executed in privileged mode.

Store hardening transforms all stores within the application
code except for two cases. First, store hardening does not
transform stores used as part of Silhouette’s shadow stack in-
strumentation as they must execute as privileged instructions
so that they can write to the shadow stack. The shadow stack
pass marks all stores to the shadow stack with a special flag,
making them easily identifiable. Second, store hardening can-
not transform atomic stores (Store-Exclusive [12]) because
they do not have unprivileged counterparts. Silhouette utilizes
Software Fault Isolation (SFI) [69] to prevent those stores
from writing to the shadow stack region.

As discussed in Section 3, Silhouette does not transform
the HAL code; thus, the stores in the HAL code are left
unmodified. This is because the HAL contains hardware I/O
and configuration code that must be able to read and write
the System, Device, and Peripheral memory regions. To
prevent attackers from using privileged stores within the HAL
code, Silhouette employs CFI as Section 5.3 explains.

5.3 Forward Branch Control-Flow Integrity
Shadow stacks protect the integrity of function returns, but
memory safety attacks can still corrupt data used for forward-
edge control flow branches, e.g., function pointers. If left
unchecked, these manipulations would allow an attacker to
redirect control flow to anywhere in the program, making it
trivial for the attacker to corrupt the shadow stack with an
arbitrary value or to load a return address from an arbitrary
location. Consequently, Silhouette must restrict the possible
targets of forward-edges to ensure return address integrity.

There are two types of forward branches: indirect function
calls and forward indirect jumps. For the former, Silhouette
uses label-based CFI checks [1,17] to restrict the set of branch
targets and ensure that the remaining privileged store instruc-
tions cannot be leveraged by an attacker to corrupt the shadow
stack. Silhouette-protected systems use privileged store in-
structions only in the HAL library and in function prologues
to write the return address to the shadow stack. The HAL
library is compiled separately and has no CFI labels in its
code; even coarse-grained CFI ensures that no store instruc-
tions within the HAL library can be exploited via an indirect
call (direct calls to HAL library functions are permitted as
they do not require CFI label checks). For a function call,
ARM processors automatically put the return address in the
lr register. Silhouette’s shadow stack transformation pass
modifies function prologues to store lr to the shadow stack.
Label-based CFI guarantees an indirect function call can only
jump to the beginning of a function, ensuring that attackers
cannot use the function prologue to write arbitrary values to
the shadow stack.

There are three constructs in C that may cause a compiler
to generate forward indirect jumps: indirect tail function calls,
large switch statements, and computed goto statements (“La-
bel as Values” in GNU’s nomenclature [36]). Silhouette’s CFI
forces indirect tail function calls to jump to the beginning of a
function. Restricting large switch statements and computed
goto statements is implementation-dependent. We explain
how Silhouette handles them in Section 6.3.

5.4 Privileged Code Scanner

As Silhouette executes all code within the processor’s priv-
ileged mode, Silhouette uses a code scanner to ensure the
application code is free of privileged instructions that could
be used by an attacker to disable Silhouette’s protections. If
the scanner detects such instructions, it presents a message to
the application developer warning that the security guarantees
of Silhouette could be violated by the use of such instructions.
It is the application developer’s decision whether to accept the
risk or modify the source code to avoid the use of privileged
instructions.

On ARMv7-M [12], there is only one privileged instruction
that must be removed: MSR (Move to Special register from
Register). One other, CPS (Change Processor State), must be
rendered safe through hardware configuration. Specifically,
the MSR instruction can change special register values in ways
that can subvert Silhouette. For example, MPU protections
on the shadow stack could be bypassed by changing the stack
pointer registers (MSP or PSP on ARMv7-M) to move the
shadow stack to a memory region writeable by unprivileged
code. The CPS instruction can change the execution priority,
and the MPU will elide protection checks if the current ex-
ecution priority is less than 0 and the HFNMIENA bit in the
MPU Control Register (MPU_CTRL) is set to 0 [12]. However,



Silhouette disables this feature by setting the HFNMIENA bit
to 1, rendering the CPS instruction safe. A third instruction,
MRS (Move to Register from Special register), can read special
registers [12] but cannot be used to compromise the integrity
of Silhouette.

Finally, as Silhouette provides control-flow integrity, an at-
tacker cannot use misaligned instruction sequences to execute
unintended instructions [1]. Therefore, a linear scan of the
assembly is sufficient for ensuring that the application code
is free of dangerous privileged instructions.

5.5 Improvements with Silhouette-Invert
Swapping a privileged store with a single equivalent unprivi-
leged store introduces no overhead. However, as Section 6.2
explains, Silhouette must add additional instructions when
converting some privileged stores to unprivileged stores. For
example, transforming floating-point stores and stores with a
large offset operand adds time and space overhead.

However, we can minimize store hardening overhead by
inverting the roles of hardware privilege modes. Specifically,
if we can invert the permissions of the shadow stack region to
disallow writes from privileged stores but allow writes from
unprivileged stores, then we can leave the majority of store in-
structions unmodified. In other words, this design would allow
all stores (except shadow stack writes) to remain unmodified,
thereby incurring negligible space and time overhead for most
programs. We refer to this variant as Silhouette-Invert.

Silhouette-Invert is similar in design to ILDI [22] which
uses the Privileged Access Never (PAN) feature on ARMv8-
A [8, 14] to prevent privileged stores from writing to user-
space memory. Unfortunately, the ARMv7-M architecture
lacks PAN support and provides no way of configuring mem-
ory to be writeable by unprivileged stores but inaccessible to
privileged stores [12]. We therefore reason about the potential
performance benefits using a prototype that mimics the over-
head of a real Silhouette-Invert implementation. Section 6.5
discusses two potential hardware extensions to ARMv7-M to
enable development of Silhouette-Invert.

5.6 Hardware Configuration Protection
As all code on our target system resides within a single ad-
dress space and, further, as Silhouette executes application
code in privileged mode to avoid costly context switching,
we must use both the code transformations described above
and load-time hardware configurations to ensure that mem-
ory safety errors cannot be used to reconfigure privileged
hardware state. For example, such state would include the in-
terrupt vector table and memory-mapped MPU configuration
registers; on ARMv7-M, most of this privileged hardware
state is mapped into the physical address space and can be
modified using store instructions [12]. If application code
can write to these physical memory locations, an adversary

mov.w ip, #0xe00000 // ip is the intra -procedure
// call scratch register

str.w lr, [sp, ip] // Save lr to mem[sp + ip]

Listing 1: Instructions to Update the Shadow Stack

can reconfigure the MPU to make the shadow stack writable
or can violate CFI by changing the address of an interrupt
handler and then waiting for an interrupt to occur. Therefore,
Silhouette makes sure that the MPU prevents these memory-
mapped registers from being writable by unprivileged store
instructions. As Section 2 explains, the ARMv7-M MPU is
automatically configured this way.

6 Implementation

We implemented Silhouette by adding three new
MachineFunction passes to the LLVM 9.0 compiler [45]:
one that transforms the prologue and epilogue code to
use a shadow stack, one that inserts CFI checks on all
computed branches (except those used for returns), and
one that transforms stores into STRT, STRHT, or STRBT
instruction sequences. Silhouette runs our new passes after
instruction selection and register allocation so that subsequent
code generator passes do not modify our instrumentation.
Finally, we implemented the privileged code scanner using a
Bourne Shell script which disassembles the final executable
binary and searches for privileged instructions. Writing a
Bourne shell script made it easier to analyze code within
inline assembly statements; such statements are translated
into strings within special instructions in the LLVM code
generator. We measured the size of the Silhouette passes and
code scanner using SLOCCount 2.26. Silhouette adds 2,416
source lines of C++ code to the code generator; the code
scanner is 95 source lines of Bourne shell code.

6.1 Shadow Stack Transformation
Our prototype implements a parallel shadow stack [28] which
mirrors the size and layout of the normal stack. By using
parallel shadow stacks, the top of the shadow stack is always a
constant offset from the regular stack pointer. Listing 1 shows
the two instructions inserted by Silhouette in a function’s
prologue for our STM32F469 Discovery board [64, 66]. The
constant moved to the ip register may vary across different
devices based on the available address space. Note that the
transformed prologue writes the return address into both the
regular stack and the shadow stack.

Silhouette transforms the function epilogue to load the
saved return address to either pc (program counter) or lr, de-
pending on the instructions used in the original epilogue code.
The instructions added by the shadow stack transformation
are marked with a special flag so that a later pass (namely, the



store hardening pass) knows that these instructions implement
the shadow stack functionality.

Silhouette also handles epilogue code within IT blocks [12].
An IT (short for If-Then) instruction begins a block of up to
4 instructions called an IT block. An IT block has a condition
code and a mask to control the conditional execution of the
instructions contained within the block. A compiler might
generate an IT block for epilogue code if a function contains
a conditional branch and one of the branch targets contains a
return statement. For each such epilogue IT block, Silhou-
ette removes the IT instruction, applies the epilogue trans-
formation, and inserts new IT instruction(s) with the correct
condition code and mask to cover the new epilogue code.

6.2 Store Hardening

Silhouette transforms all possible variations of regular stores
to one of the three unprivileged store instructions: STRT (store
word), STRHT (store halfword), and STRBT (store byte) [12].
When possible, Silhouette swaps the normal store with the
equivalent unprivileged store. However, some store instruc-
tions are not amenable to a direct one-to-one translation. For
example, some store instructions use an offset operand larger
than the offset operand supported by the unprivileged store
instructions; Silhouette will insert additional instructions to
compute the target address in a register so that the unprivi-
leged store instructions can be used. ARMv7-M also supports
instructions that store multiple values to memory [12]; Sil-
houette converts such instructions to multiple unprivileged
store instructions. For Store-Exclusive instructions [12], Sil-
houette adds two BIC (bitmasking) instructions before the
atomic store to force the address operand to point into the
global, heap, or regular stack regions.

Silhouette handles store instructions within IT [12] blocks
in a similar way to how it handles epilogue code within IT
blocks. If an IT block has at least one store instruction, Silhou-
ette removes the IT instruction, applies store hardening for
each store instruction within the IT block, and adds new IT
instruction(s) to cover newly inserted instructions as well as
original non-store instructions within the old IT block. This
guarantees store hardening generates semantically equivalent
instructions for every store in an IT block.

Silhouette sometimes adds code that must use a scratch
register. For example, when transforming floating-point store
instructions, Silhouette must create code that moves the value
from a floating-point register to one or two integer registers
because unprivileged store instructions cannot access floating-
point registers. Our prototype uses LLVM’s LivePhysRegs
class [51] to find free registers to avoid adding register spill
code. This optimization significantly reduces store harden-
ing’s performance overhead on certain programs; for example,
we observed a reduction from 39% to 4.9% for a loop bench-
mark. Section 8.3 presents detailed data of our experiments.

Comparison with uXOM’s Store Transformation There
are two major differences between Silhouette’s implemen-
tation of store hardening and the corresponding store
transformation of uXOM [44]. First, Silhouette performs
store hardening near the end of LLVM’s backend pass
pipeline (after register allocation and right before the
ARMConstantIslandPass [48]). We made this choice to
avoid situations wherein later compiler passes (potentially
added by other developers) either generate new privileged
stores or transform instructions inserted by Silhouette’s
shadow stack, store hardening, and CFI passes. As mentioned
above, Silhouette avoids register spilling by utilizing LLVM’s
LivePhysRegs class to find free registers. In contrast, uXOM
transforms store instructions prior to register allocation to
avoid searching for scratch registers. As a consequence, sub-
sequent passes, such as prologue/epilogue insertion or passes
added by future developers, must ensure that they do not
add any new privileged store instructions. Second, our store
hardening pass transforms all privileged stores (sans Store-
Exclusives) while uXOM optimizes its transformation by
eliding transformation of certain stores (such as those whose
base register is sp) when it is safe to do so. The uXOM opti-
mization is safe when used with uXOM’s security policy but
may not be safe if store hardening is used to enforce a new
security policy that does not protect the integrity of the stack
pointer register. Implementing store hardening and optimiza-
tion in a single pass makes the compiler efficient. However,
by adhering to the Separation of Concerns principle in com-
piler implementation [15], our code is more easily reused:
to use store hardening for a new security policy, one simply
changes the compiler to run our store hardening pass and then
implements any optimization passes that are specific to that
security policy.

6.3 Forward Branch Control-Flow Integrity
Indirect Function Calls With link-time optimization en-
abled, Silhouette inserts a CFI label at the beginning of every
address-taken function. Silhouette also inserts a check before
each indirect call to ensure that the control flow transfers to a
target with a valid label.

Our prototype uses coarse-grained CFI checks, i.e., the
prototype uses a single label for all address-taken functions.
We picked 0x4600 for the CFI label as it encodes the Thumb
instruction mov r0, r0 and therefore has no side effect when
executed. With the addition of static call graph analysis [46],
it is possible to extend the Silhouette prototype to use multiple
labels with no increase in runtime overhead.

Forward Indirect Jumps Table 1 summarizes the three
types of constructs of C that may cause a compiler to gen-
erate a forward indirect jump and how they are handled by
Silhouette. The compiler may insert indirect jumps to imple-
ment large switch statements. LLVM lowers large switch



Code Pattern How Silhouette Handles Them

Large switch statement Compiled to bounds-checked TBB or TBH
Indirect tail function call Restricted by CFI
Computed goto statement Transformed to switch statement

Table 1: C Code That May Be Compiled to Indirect Jumps

statements into PC-relative jump-table jumps using TBB or
TBH instructions [12]; for each such instruction, LLVM places
the jump table immediately after the instruction and inserts
a bounds check on the register holding the jump-table index
to ensure that it is within the bounds of the jump table. As
jump-table entries are immutable and point to basic blocks
that are valid targets, such indirect jumps are safe. Tail-call
optimization transforms a function call preceding a return
into a jump to the target function. Silhouette’s CFI checks
ensure that tail-call optimized indirect calls jump only to
the beginning of a function. The last construct that can gen-
erate indirect jumps is the computed goto statement. For-
tunately, LLVM compiles computed goto statements into
indirectbr IR instructions [50]. Silhouette uses LLVM’s
existing IndirectBrExpandPass [49] to turn indirectbr
instructions into switch instructions. We can then rely upon
LLVM’s existing checks on switch instructions, described
above, to ensure that indirect jumps generated from switch
instructions are safe. In summary, Silhouette guarantees that
no indirect jumps can jump to the middle of another function.

6.4 MPU Configuration

Our prototype also includes code that configures the MPU
before an application starts. Figure 2 shows the address space
and the MPU configuration for each memory region of a
Silhouette-protected system on our STM32F469 Discovery
board [64,66]. Silhouette uses five MPU regions to prevent un-
privileged stores from corrupting the shadow stack, program
code, and hardware configuration. First, Silhouette sets the
code region to be readable, executable, and non-writable for
both privileged and unprivileged accesses. No other regions
are configured executable; this effectively enforces W⊕X.
Second, Silhouette configures the shadow stack region to be
writable only by privileged code. All other regions of RAM
are set to be readable and writable by both privileged and
unprivileged instructions. Our prototype restricts the stack
size to 2 MB; this should suffice for programs on embedded
devices.4 Note that Silhouette swaps the normal positions
of the stack and the heap to detect shadow stack overflow:
a stack overflow will decrement the stack pointer to point
to the inaccessible region near the top of the address space;
a trap will occur when the prologue attempts to save the

4The default stack size of Android applications, including both Java code
and native code, is only around 1 MB [6].

return address there. An alternative to preventing the over-
flow is to put an inaccessible guard region between the stack
and the heap; however, it costs extra memory and an extra
MPU configuration region. Finally, Silhouette enables the
default background region which disallows any unprivileged
reads and writes to address ranges not covered by the above
MPU regions, preventing unprivileged stores from writing the
MPU configuration registers and the Peripheral, Device,
and System regions.

6.5 Silhouette-Invert
Our Silhouette-Invert prototype assumes that the hardware
supports the hypothetical inverted-design described in Sec-
tion 5.5, i.e., the MPU can be configured so that the shadow
stack is only writable in unprivileged mode. We briefly pro-
pose two designs to change the hardware to support the mem-
ory access permissions required by Silhouette-Invert.

One option is to use a reserved bit in the Application Pro-
gram Status Register (APSR) [12] to support the PAN state
mentioned in Section 5.5. In ARMv8-A processors, PAN is
controlled by the PAN bit in the Current Program Status Reg-
ister (CPSR) [14]. Currently, 24 bits of APSR are reserved [12]
and could be used for PAN on ARMv7-M.

The second option is to add support to the MPU. In
ARMv7-M, the permission configuration of each MPU re-
gion is defined using three Access Permission (AP) bits in the
MPU Region Attribute and Size Register (MPU_RASR) [12].
Currently, binary value 0b100 is reserved, so one could map
this reserved value to read and write in unprivileged mode
and no access in privileged mode, providing support to the
permissions required by Silhouette-Invert without changing
the size of AP or the structure of MPU_RASR.

In the Silhouette-Invert prototype, the function prologue
writes the return address to the shadow stack using an unprivi-
leged store instruction, and CFI uses regular store instructions
to save registers to the stack during label checks; all other
store instructions remain unchanged. The MPU is also config-
ured so that the shadow stack memory region is writable in
unprivileged mode, and other regions of RAM are accessible
only in privileged mode. As configuring memory regions to be
writable in unprivileged mode only would require a hardware
change, the Silhouette-Invert prototype instead configures the
shadow stack region to be writable by both unprivileged and
privileged stores. We believe both of the potential hardware
changes proposed above would add negligible performance
overhead. Section 8 shows that Silhouette-Invert reduces over-
head considerably.

6.6 Implementation Limitations
Our Silhouette and Silhouette-Invert prototypes share a few
limitations. First, they currently do not transform inline as-
sembly code. The LLVM code generator represents inline
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Figure 2: Address Space and MPU Configurations of Silhouette on STM32F469 Discovery Board

assembly code within a C source file as a special “inline
asm” instruction with a string containing the assembly code.
Consequently, inline assembly code is fed directly into the
assembler without being transformed by MachineFunction
passes. Fortunately, hand-written inline assembly code in ap-
plications is rare; our benchmarks contain no inline assembly
code. Future implementations could implement store harden-
ing within the assembler which would harden stores in both
compiler-generated and hand-written assembly code. Second,
our current prototypes do not instrument the startup code or
the newlib library [56]. These libraries are provided with our
development board as pre-compiled native code. In principle,
a developer can recompile the startup files and newlib from
source code to add Silhouette and Silhouette-Invert protec-
tions. Third, we have not implemented the “stack-to-heap”
promotion (discussed in Section 5) for dynamically-sized
stack data. Only one of our benchmarks allocates a variable-
length local array; we manually rewrote the code to allocate
the variable on the heap. Lastly, we opted not to implement Sil-
houette’s setjmp/longjmp support, described in Appendix A,
as none of our benchmarks use setjmp and longjmp.

7 Security Analysis

This section explains how Silhouette hinders control-flow
hijacking attacks. We first discuss how Silhouette’s protected
shadow stack, combined with the defenses on forward control-
flow, ensure that each return instruction transfers control back
to its dynamic caller. We then explain why these security
mechanisms provide strong protection against control-flow
hijacking attacks.

7.1 Integrity of Return Addresses

Silhouette ensures that functions return control flow to their
dynamic callers when executing a return instruction by en-
forcing three invariants at run-time:

Invariant 1 (I1). A function stores the caller’s return address
on the shadow stack, or never spills the return address in
register lr to memory.

Invariant 2 (I2). Return addresses stored on the shadow
stack cannot be corrupted.

Invariant 3 (I3). If a function stores the return address on
the shadow stack, its epilogue will always retrieve the return
address from the correct memory location in the shadow
stack, i.e., the location into which its prologue stored the
return address.

As the prologue and epilogue code use the stack pointer to
compute the shadow stack pointer, maintaining all the invari-
ants requires maintaining the integrity of the stack pointer. In-
variants I1 and I3 require the function prologue and epilogue
to keep the stack pointer within the stack region. Additionally,
for I3, Silhouette must ensure that the stack pointer is restored
to the correct location on the stack to ensure that the shadow
stack pointer is pointing to the correct return address. For
I2, besides being inside the stack region, any function call’s
stack pointer must be guaranteed to stay lower than its frame
pointer; otherwise, the valid return addresses on the shadow
stack may be corrupted.

To maintain the invariants, Silhouette prevents programs
from loading corrupted values into the stack pointer by en-
suring that application code never spills and reloads the stack
pointer to/from memory. In particular, functions that have
dynamically-sized stack allocations or that allocate stack
memory within a loop may trigger the code generator to spill
and reload the stack pointer. As Section 5 explains, Silhouette
promotes such problematic alloca instructions into heap al-
locations, ensuring that all functions have constant-sized stack
frames and therefore have no need to spill the stack pointer.

The next issue is ensuring that the remaining fixed-size
stack memory allocations and deallocations cannot be used
to violate the invariants. To prevent stack overflow, Silhouette
positions the regular stack at the bottom of the address space
as Figure 2 shows. If a stack overflow occurs, the stack pointer
will point to a location near the top of the address space; if any
function prologue subsequently executes, it will attempt to
write the return address into an inaccessible location, causing
a trap that will allow the TCB to respond to the overflow.

To ensure that stack deallocation does not cause stack un-
derflow, Silhouette ensures that deallocation frees the same
amount of stack memory that was allocated in the function
prologue. Several Silhouette features ensure this. First, the
checks on forward control flow ensure that control is never
transferred into the middle of a function (as Section 6.3 de-
scribes). Second, if I1, I2, and I3 hold prior to the under-
flow, then the shadow stack ensures that a function returns



to the correct caller, preventing mismatched prologues and
epilogues. Finally, since the function prologue dominates all
code in the function, and since the function epilogue post-
dominates all code in the function, the epilogue will always
deallocate the memory allocated in the prologue.

In summary, Silhouette maintains I1 and I3 by ensuring
that the stack pointer stays within the stack region during the
function prologue and epilogue and that the epilogue will
always deallocate stack memory correctly. Silhouette also
ensures that the stack pointer will always be lower than the
frame pointer, maintaining I2.

7.2 Reduced Attack Surface

Recent work has shown the importance of protecting return
addresses to increase the precision, and thus strength, of CFI-
based defenses [19, 20, 25, 29, 37]. In particular, without a
protected shadow stack or other mechanisms to ensure the
integrity of return addresses, CFI with static labels cannot
ensure that a function returns to the correct caller at runtime;
instead, a function is typically allowed to return to a set of
possible callers. Attacks against CFI exploit this imprecision.

Most attacks against CFI target programs running on
general-purpose systems. Some attacks exploit features spe-
cific to certain platforms, and it is not clear if they can be
ported to attack embedded devices. For example, Conti et
al. [25] showed how to corrupt return addresses saved by
unprotected context switches on Windows on 32-bit x86
processors. However, many attacks involve generic code
patterns that can likely be adapted to attack CFI-protected
programs on embedded systems. We now discuss generic
control-flow hijacking code patterns discovered by recent
work [19, 20, 29, 37]. As we discuss below, Silhouette is ro-
bust against these attacks.

Göktas et al. [37] evaluated the effectiveness of coarse-
grained CFI that allows two types of gadgets: Call-site (CS)
gadgets that start after a function call and end with a return,
and Entry-point (EP) gadgets that start at the beginning of
a function and end with any indirect control transfer. CS
gadgets are a result of corrupted return addresses, and EP
gadgets stem from corrupted function pointers or indirect
jumps if the CFI policy does not distinguish indirect calls and
jumps. The authors proposed four methods of chaining the
gadgets: CS to CS (i.e., return-oriented programming), EP
to EP (call-oriented programming), EP to CS, and CS to EP.
Three of these four methods require a corrupted return address.
Their proof-of-concept exploit uses both types of the gadgets.
Similarly, Carlini et al. [20] and Davi et al. [29] showed how
to chain call-preceded gadgets (instruction sequences starting
right after a call instruction) to launch code-reuse attacks
against CFI. As Silhouette prevents return address corruption,
only attacks that chain EP gadgets are possible.

Carlini et al. [19] also demonstrated the weaknesses of
CFI and emphasized the importance of a shadow stack. They

proposed a Basic Exploitation Test (BET)—i.e., a minimal
program for demonstrating vulnerabilities—to quickly test the
effectiveness of a CFI policy. Their work identifies five dan-
gerous gadgets that allow arbitrary reads, writes, and function
calls in the BET under a coarse-grained CFI policy. How-
ever, all of these are call-preceded gadgets, and Silhouette’s
protected shadow stack stymies call-preceded gadgets.

Additionally, Carlini et al. [19] demonstrated a fundamen-
tal limitation of CFI defenses when used without another
mechanism to provide return address integrity. Specifically,
they showed that even fully-precise static CFI cannot com-
pletely prevent control-flow hijacking attacks, concluding that,
regardless of the precision of the computed call graph, protec-
tion for return addresses is needed.

In summary, with the protection of Silhouette, control-flow
hijacking attacks are restricted to only call-oriented program-
ming. Although there are still potential dangers [35], Silhou-
ette significantly reduces the control-flow hijacking attack
surface for embedded programs.

8 Experimental Results

Below, we evaluate the performance and code size overhead
of our Silhouette and Silhouette-Invert prototypes. We also
compare Silhouette to an orthogonal approach, SSFI, which
uses Software Fault Isolation (SFI), instead of store hardening,
to isolate the shadow stack from application code. In sum-
mary, we find that Silhouette and Silhouette-Invert incur low
runtime overhead (1.3% and 0.3% on average for CoreMark-
Pro, respectively) and small increases in code size (8.9% and
2.2%, respectively). In addition, we compare Silhouette with
the two most closely related defenses, RECFISH [70] and
µRAI [5]; they both protect return addresses of programs run-
ning on microcontroller-based embedded devices but leverage
different mechanisms than Silhouette.

8.1 Methodology
We evaluated Silhouette on an STM32F469 Discovery
board [64, 66] that can run at speeds up to 180 MHz. The
board encapsulates an ARM Cortex-M4 processor [9] and has
384 KB of SRAM (a 320 KB main SRAM region and a 64 KB
CCM RAM region), 16 MB of SDRAM, and 2 MB of flash
memory. As some of our benchmarks allocate megabytes of
memory, we use the SDRAM as the main memory for all
programs; global data remains in the main SRAM region.

We used unmodified Clang 9.0 to compile all benchmark
programs as the baseline, and we compare this baseline with
programs compiled by Silhouette, Silhouette-Invert, and SSFI
for performance and code size overhead. We also measured
the overhead incurred for each benchmark program when
transformed with only the shadow stack (SS) pass, only the
store hardening (SH) pass, and only the CFI pass. For all
experiments, we used the standard -O3 optimizations, and



Baseline SS SH CFI Silhou- Invert SSFI
(ms) (×) (×) (×) ette (×) (×) (×)

cjpeg-rose7-... 12,765 1.002 1.004 1.001 1.006 1.003 1.041
core 137,385 1.013 1.002 1.000 1.017 1.015 1.024
linear_alg-... 18,278 1.000 1.010 1.000 1.010 1.000 1.015
loops-all-... 35,241 1.000 1.049 1.000 1.049 1.000 1.016
nnet_test 222,461 1.000 1.013 1.000 1.013 1.000 1.023
parser-125k 9,985 1.004 1.001 1.001 1.005 1.004 1.009
radix2-big-64k 17,270 1.000 1.007 1.000 1.007 1.000 1.019
sha-test 40,725 1.002 1.005 0.999 1.007 1.005 1.046
zip-test 19,955 1.000 1.000 1.000 1.001 1.000 1.006

Min 9,985 1.000 1.000 0.999 1.001 1.000 1.006
Max 222,461 1.013 1.049 1.001 1.049 1.015 1.046
Geomean — 1.002 1.010 1.000 1.013 1.003 1.022

Table 2: Performance Overhead on CoreMark-Pro

we used LLVM’s lld linker with the -flto option to do
link-time optimization.

As Silhouette-Invert requires a hardware enhancement for a
fully-functional implementation, the numbers we present here
are an estimate of Silhouette-Invert’s performance. However,
as Sections 5.5 and 6.5 discuss, the hardware changes needed
by Silhouette-Invert should have minor impact on execution
time and no impact on code size. Therefore, our evaluation
of the Silhouette-Invert prototype should provide an accurate
estimate of its performance and memory overhead.

We discuss the implementation of SSFI and compare it
with Silhouette and Silhouette-Invert in Section 8.5.

8.2 Benchmarks
We chose two benchmark suites for our evaluation: CoreMark-
Pro [34] and BEEBS [58]. The former is the de facto industry
standard benchmark for embedded processors; the latter has
been used in the evaluation of other embedded defenses [24,
44, 70].

CoreMark-Pro The CoreMark-Pro [34] benchmark suite is
designed for both low-end microcontrollers and high-end mul-
ticore processors. It includes five integer workloads (includ-
ing JPEG compression and SHA-256) and four floating-point
workloads such as fast Fourier transform (FFT) and a neural
network benchmark. One of the workloads is a more memory-
intense version of the original CoreMark benchmark [33];
note, ARM recommends the use of the original CoreMark
benchmark to test Cortex-M processors [10]. We used commit
d15927b of the CoreMark-Pro repository on GitHub.

The execution time of CoreMark-Pro is reported by bench-
marks themselves, which is by calling HAL_GetTick() [63]
to mark the start and the end of benchmark workload execu-
tion and printing out the time difference in milliseconds. We
added code before the main function starts to initialize the
HAL, set up the clock speed, configure the MPU, and estab-
lish a serial output. We run each CoreMark-Pro benchmark in
different number of iterations so that the baseline execution
time is between 5 to 500 seconds.

Baseline SS SH CFI Silhou- Invert SSFI
(ms) (×) (×) (×) ette (×) (×) (×)

bubblesort 2,755 1.001 1.247 1.000 1.248 1.000 1.510
ctl-string 1,393 1.015 1.011 0.999 1.027 1.016 1.035
cubic 28,657 1.002 1.002 1.000 1.002 1.001 1.005
dijkstra 40,580 1.002 1.001 1.000 1.003 1.002 1.117
edn 2,677 1.000 1.004 1.000 1.004 1.000 1.058
fasta 16,274 1.000 1.000 1.000 1.000 1.000 1.001
fir 16,418 1.000 1.000 1.000 1.000 1.000 1.021
frac 8,846 1.000 1.003 1.000 1.000 1.000 1.009
huffbench 46,129 1.000 1.005 1.000 1.005 1.000 1.017
levenshtein 7,835 1.005 1.019 1.000 1.207 1.186 1.248
matmult-int 5,901 1.000 1.011 1.000 1.012 1.000 1.048
nbody 124,578 1.000 0.997 1.000 0.997 1.000 1.003
ndes 1,938 1.010 1.008 1.000 1.016 1.011 1.039
nettle-aes 7,030 1.000 1.003 1.000 1.003 1.000 1.111
picojpeg 43,010 1.037 1.057 0.997 1.098 1.037 1.380
qrduino 43,564 1.000 1.036 1.000 1.036 1.000 1.072
rijndael 78,849 1.001 1.008 1.000 1.008 1.005 1.146
sglib-dllist 1,327 1.001 1.006 1.000 1.007 1.001 1.268
sglib-listins... 1,359 1.001 1.000 1.000 1.001 1.001 1.054
sglib-listsort 1,058 1.001 0.999 1.000 1.000 1.001 1.233
sglib-queue 2,135 1.000 1.029 1.000 1.030 1.000 1.122
sglib-rbtree 7,802 1.092 1.017 1.000 1.110 1.093 1.157
slre 4,163 1.031 1.013 1.000 1.045 1.035 1.112
sqrt 55,894 1.000 1.002 1.000 1.006 1.002 1.002
st 20,036 1.002 1.002 1.002 1.002 1.002 1.008
stb_perlin 3,168 1.073 1.052 1.000 1.049 1.073 1.045
trio-sscanf 1,335 1.037 1.006 1.022 1.073 1.063 1.115
whetstone 97,960 1.000 1.001 1.000 1.001 1.000 1.002
wikisort 160,307 1.011 1.013 1.016 1.039 1.029 1.180

Min 1,058 1.000 0.997 0.997 0.997 1.000 1.001
Max 160,307 1.092 1.247 1.022 1.248 1.186 1.510
Geomean — 1.011 1.018 1.001 1.034 1.019 1.102

Table 3: Performance Overhead on BEEBS

BEEBS The BEEBS benchmark suite [58] is designed for
measuring the energy consumption of embedded devices.
However, it is also useful for evaluating performance and
code size overhead because it includes a wide range of pro-
grams, including a benchmark based on the Advanced En-
cryption Standard (AES), integer and floating-point matrix
multiplications, and an advanced sorting algorithm.

The major drawback of BEEBS is that many of its pro-
grams either are too small or process too small inputs, result-
ing in insufficient execution time. For example, fibcall is
intended to compute the 30th Fibonacci number, but Clang
computes the result during compilation and returns a constant
directly. To account for this issue, we exclude programs with
a baseline execution time of less than one second with 10,240
iterations. We also exclude mergesort because it failed the
verify_benchmark() check when compiled with unmodi-
fied Clang. For all the other programs, all of our transformed
versions passed this function, if it was implemented. We used
commit 049ded9 of the BEEBS repository on GitHub.

To record the execution time of an individual BEEBS
benchmark, we wrapped 10,240 iterations of benchmark work-
load execution with calls to HAL_GetTick() [63] and added
code to print out the time difference in milliseconds. We also
did the same initialization sequence for each BEEBS bench-
mark as we did for CoreMark-Pro.



8.3 Runtime Overhead

Tables 2 and 3 show the performance overhead that Silhouette
and Silhouette-Invert induce on CoreMark-Pro and BEEBS,
respectively; overhead is expressed as execution time normal-
ized to the baseline. The SS column shows the overhead of
just the shadow stack transformation, SH shows the overhead
induced when only store hardening is performed, and CFI
shows the overhead of the CFI checks on forward branches.
The Silhouette and Invert columns show the overhead of
the complete Silhouette and Silhouette-Invert prototypes, re-
spectively. The SSFI column denotes overhead incurred by a
version of Silhouette that uses Software Fault Isolation (SFI)
in place of store hardening; Section 8.5 describes that experi-
ment in more detail.

Silhouette Performance As Tables 2 and 3 show, Silhou-
ette incurs a geometric mean overhead of only 1.3% on
CoreMark-Pro and 3.4% on BEEBS. The highest overhead
is 4.9% from CoreMark-Pro’s loops benchmark and 24.8%
from BEEBS’s bubblesort benchmark. The bubblesort
benchmark exhibits high overhead because it spends most of
its execution in a small loop with frequent stores; to promote
these stores, Silhouette adds instructions to the loop that com-
pute the target address. Another BEEBS program with high
overhead is levenshtein. The reason is that one of its func-
tions has a variable-length array on the stack and that function
is called in a loop; Silhouette promotes the stack allocation to
the heap with malloc() and free(). Without this promotion,
Silhouette incurs 2.2% overhead on levenshtein. Nearly all
(8 of 9) of the CoreMark-Pro benchmarks slow down by less
than 2%, and 5 programs have less than 1% overhead. For
BEEBS, 24 of the 29 programs slow down by less than 5%;
16 programs have overhead less than 1%. Tables 2 and 3
also show that the primary source of the overhead is typically
store hardening, though for some programs e.g., core and
sglib-rbtree, the shadow stack induces more overhead due
to extensive function calls. CFI overhead is usually negligible
because our benchmarks seldom use indirect function calls.

Silhouette-Invert Performance Silhouette-Invert greatly
decreases the overhead because it only needs to convert the
single privileged store instruction in the prologue of a function
to a unprivileged one and leave all other stores unchanged.
It incurs only 0.3% geomean overhead on CoreMark-Pro.
Seven of the 9 programs show overhead less than 0.5%. For
BEEBS, the geometric mean overhead is 1.9%. When ex-
cluding the special case of levenshtein, the average over-
head is 1.3%. Twenty of the 29 programs slow down by less
than 1%. Only three programs, sglib-rbtree, stb_perlin,
and trio-sscanf, again, except levenshtein, slow down
by over 5%, and all of them have very frequent function calls.

Baseline SS SH CFI Silhou- Invert SSFI
(bytes) (×) (×) (×) ette (×) (×) (×)

Min 51,516 1.005 1.028 1.002 1.036 1.008 1.071
Max 99,156 1.017 1.111 1.094 1.193 1.113 1.315
Geomean — 1.008 1.068 1.012 1.089 1.022 1.172

Table 4: Code Size Overhead on CoreMark-Pro

Baseline SS SH CFI Silhou- Invert SSFI
(bytes) (×) (×) (×) ette (×) (×) (×)

Min 30,144 1.003 1.005 1.000 1.009 1.000 1.009
Max 46,108 1.006 1.061 1.013 1.068 1.019 1.201
Geomean — 1.004 1.018 1.001 1.023 1.005 1.044

Table 5: Code Size Overhead on BEEBS

8.4 Code Size Overhead
Small code size is critical for embedded systems with lim-
ited memory. We therefore measured the code size overhead
incurred by Silhouette by measuring the code size of the
CoreMark-Pro and BEEBS benchmarks. Due to space limita-
tions, we only show the highest, lowest, and average code size
increases in Tables 4 and 5. In summary, Silhouette incurs
a geometric mean of 8.9% and 2.3% code size overhead on
CoreMark-Pro and BEEBS, respectively.

For Silhouette, most of the code size overhead comes from
store hardening. As Section 6.2 explains, Silhouette trans-
forms some regular store instructions into a sequence of mul-
tiple instructions. Floating-point stores and stores that write
multiple registers to contiguous memory locations bloat the
code size most. In BEEBS, picojpeg incurs the highest code
size overhead because an unrolled loop contains many such
store instructions, and the function that contains the loop is
inlined multiple times. For Silhouette-Invert, because it leaves
nearly all stores unchanged, its code size overhead is only
2.2% on CoreMark-Pro and 0.5% on BEEBS.

8.5 Store Hardening vs. SFI
An alternative to using store hardening to protect the shadow
stack is to use Software Fault Isolation (SFI) [69]. To com-
pare the performance and code size overhead of store hard-
ening against SFI, we built a system that provides the same
protections as Silhouette but that uses SFI in place of store
hardening. We dub this system Silhouette-SFI (SSFI). Our
SFI pass instruments all store instructions within a program
other than those introduced by the shadow stack pass and
those in the HAL. Specifically, our SSFI prototype adds the
same BIC [12] (bitmasking) instructions as what Silhouette
does for Store-Exclusives (discussed in Section 6.2) before
each store to restrict them from writing to the shadow stack.

SSFI incurs much higher performance and code size over-
head compared to Silhouette. On CoreMark-Pro, SSFI incurs
a geometric mean of 2.2% performance overhead, nearly dou-
bling Silhouette’s average overhead of 1.3%; on BEEBS,



SSFI slows down programs by 10.2%, three times of Silhou-
ette’s 3.4%. Only on one program, the loops benchmark in
CoreMark-Pro, SSFI performs better than Silhouette. For code
size, SSFI incurs an average of 17.2% overhead on CoreMark-
Pro and 4.4% on BEEBS; the highest overhead is 31.5% and
20.1%, respectively, while on Silhouette it is 19.3% and 6.8%.
The specific implementation of SFI will vary on different
devices due to different address space mappings, so it is possi-
ble to get different overhead on different boards for the same
program. In contrast, Silhouette’s performance overhead on
the same program should be more predictable across differ-
ent boards because the instructions added and replaced by
Silhouette remain the same.

8.6 Comparison with RECFISH and µRAI
RECFISH [70] and µRAI [5] are both recently published
defenses that provide security guarantees similar to Silhouette
but via significantly different techniques. Like Silhouette, they
provide return address integrity coupled with coarse-grained
CFI protections for ARM embedded architectures. As each
defense has distinct strengths and weaknesses, the choice of
defense depends on the specific application to be protected. To
compare Silhouette with RECFISH and µRAI more directly
and fairly, we also evaluated Silhouette with BEEBS and the
original CoreMark benchmark using only SRAM and present
their performance numbers.

RECFISH [70], which is designed for real-time systems,
runs code in unprivileged mode and uses supervisor calls
to privileged code to update the shadow stack. Due to fre-
quent context switching between privilege levels, RECFISH
incurs higher overhead than Silhouette or µRAI. For the 24
BEEBS benchmarks that RECFISH and Silhouette have in
common,5 RECFISH incurs a geometric mean of 21% per-
formance overhead, and approximately 30% on CoreMark
whereas Silhouette incurs just 3.6% and 6.7%, respectively.
Unlike the other two defenses, RECFISH patches binaries;
no application source code or changes to the compiler are
needed.

µRAI [5] protects return addresses, in part, by encoding
them into a single reserved register and guaranteeing this
register is never corrupted. This approach is more complicated
but requires no protected shadow stack. Consequently, µRAI
is very efficient for most function calls, incurring three to five
cycles for each call-return. However, there are cases, such
as calling a function from an uninstrumented library, when
µRAI needs to switch hardware privilege levels to save/load
the reserved register to/from a safe region, which is expensive.

The µRAI paper [5] reports an average of 0.1% perfor-
mance overhead on CoreMark and five IoT applications. The
µRAI authors observed that one IoT program, FatFs_RAM,
saw a 8.5% speedup because their transformation triggered

5We obtained RECFISH’s detailed performance data on BEEBS via direct
correspondence with the RECFISH authors.

the compiler to do a special optimization that was not per-
formed on the baseline code. When accounting for this opti-
mization, µRAI incurred an overhead of 6.9% on FatFs_RAM
and 2.6% on average for all benchmarks. We measured the
performance of CoreMark using Silhouette; the result is 6.7%
overhead compared to µRAI’s reported 8.1% [5].

Finally, we observe that Silhouette’s store hardening is a
general technique for intra-address space isolation. Thus, Sil-
houette can be extended to protect other security-critical data
in memory, which Section 9 discusses. In contrast, µRAI only
protects a small amount of data by storing it within a reserved
register; its approach cannot be as easily extended to protect
arbitrary amounts of data. µRAI does rely on SFI-based in-
strumentation in exception handlers for memory isolation, but
our results in Section 8.5 show that store hardening is more
efficient than SFI and could therefore be used to replace SFI
in µRAI.

9 Extensibility

Although Silhouette focuses on providing control-flow and
return address integrity for bare-metal applications, it can
also be extended to other use cases. For example, with min-
imal modification, Silhouette can be used to protect other
security-critical data in memory, such as CPI’s sensitive
pointer store [43] or the kernel data structures within an em-
bedded OS like Amazon FreeRTOS [16].

With moderate modification, Silhouette can also emulate
the behavior of running application code in unprivileged mode
on an embedded OS. First, the kernel of the embedded OS
would need to configure the MPU to disable unprivileged
write access to all kernel data. Second, the embedded OS
kernel’s scheduler would need to disable unprivileged write
access to memory of background applications. Third, in addi-
tion to store hardening, Silhouette would need to transform
loads in the application code into unprivileged loads in or-
der to protect the confidentiality of OS kernel data structures.
It would also need to ensure that the embedded OS kernel
code contains no CFI labels used by user-space applications.
Fourth, the privileged code scanner must be adjusted to for-
bid all privileged instructions (as opposed to only those that
can be used to bypass Silhouette’s protections) in application
code, forbid direct function calls to internal functions of the
kernel, and allow privileged instructions in the embedded OS
kernel. Fifth, since the stack pointer of background applica-
tions needs to be spilled to memory during context switch,
the embedded OS kernel must protect the stack pointer of
applications from corruption in order to enforce Silhouette’s
security guarantee of return address integrity. One simple so-
lution would be storing application stack pointers to a kernel
data structure not writable by application code. Finally, sys-
tem calls require no changes. In ARMv7-M [12], application
code calls a system call using the SVC instruction, which gen-
erates a supervisor call exception. A pointer to the exception



handler table (which stores the address of exception handler
functions) is stored in a privileged register within the System
region; Silhouette can protect both the System region and
the exception handler table to ensure that the SVC instruction
always transfers control to a valid system call entry point.
Also, regardless of current privilege mode, exception handlers
in ARMv7-M, including the supervisor call handler, will exe-
cute in privileged mode and switch the stack pointer to use the
kernel stack [12]. Therefore, system calls require no change
for Silhouette to work as intended.

10 Related Work

Control-Flow Hijacking Defenses for Embedded Systems
Besides RECFISH [70] and µRAI [5], which Section 8.6
discusses, there are several other control-flow hijacking de-
fenses for embedded devices. CFI CaRE [57] uses supervisor
calls and TrustZone-M technology, available on the ARMv8-
M [13] architecture but not on ARMv7-M, to provide coarse-
grained CFI and a protected shadow stack. CFI CaRE’s perfor-
mance overhead on CoreMark is 513%. SCFP [71] provides
fine-grained CFI by extending the RISC-V architecture. Un-
like Silhouette, SCFP is a pure CFI defense and does not
provide a shadow stack. Therefore, it cannot mitigate attacks
such as control-flow bending [19] while Silhouette can, as
Section 7.2 shows.

Use of Unprivileged Loads/Stores Others [22, 44] have
explored the use of ARM’s unprivileged loads and stores to
provide security guarantees; however, these works differ from
Silhouette’s store hardening in both implementation and ap-
plication. uXOM [44] transforms regular load instructions
to unprivileged ones to implement execute-only memory on
embedded systems. Aside from differences in the provided se-
curity guarantees—i.e., execute-only memory versus control-
flow and return address integrity—these systems differ in how
they handle dangerous instructions that could be manipulated
to bypass protections. In particular, uXOM inserts verification
routines before unconverted load/store instructions to ensure
that they will not access security-critical memory regions
while Silhouette leverages CFI and other forward branch pro-
tections to prevent unexpected instructions from being exe-
cuted. ILDI [22] combines unprivileged loads and stores on
the ARMv8-A architecture along with the PAN state and hyp
mode to isolate data within the Linux kernel—the latter two
features are not available on the ARMv7-M systems targeted
by Silhouette.

Intra-Address Space Isolation Silhouette protects the
shadow stack by leveraging store hardening. Previous work
has explored other methods of intra-address space isolation
which could be used to protect the shadow stack. Our eval-
uation in Section 8.5 compares Silhouette to Software Fault

Isolation (SFI) [69], so we focus on other approaches here.
ARM Mbed µVisor [7], MINION [42], and ACES [23] en-

force memory compartmentalization on embedded systems
using the MPU. They all dynamically reconfigure the MPU at
runtime but target different scenarios; Mbed µVisor and MIN-
ION isolate processes from each other at context switches,
and ACES dissects a bare-metal application at function bound-
aries for intra-application isolation. As discussed previously,
isolation that requires protection domain switching is poorly-
suited to security instrumentation that requires frequent cross-
ing of the isolation boundaries—such as Silhouette’s shadow
stack accesses.

ARMlock [72] uses ARM domains to place pages into
different protection domains; a privileged register controls
access to pages belonging to different domains. ARM do-
mains are only available for CPUs with MMUs [11, 12] and
therefore cannot be used in ARMv7-M systems. Additionally,
access to ARM domains can only be modified in privileged
mode; software running in user-space must context switch to
privileged mode to make changes.

Information Hiding Given the traditionally high cost of
intra-address space isolation, many defenses hide security-
critical data by placing it at a randomly chosen address. This
class of techniques is generally referred to as information
hiding. For example, EPOXY [24] includes a backward-edge
control-flow hijacking defense that draws inspiration from
CPI [43]—relying on information hiding to protect security-
critical data stored in memory. Consequently, an adversary
with a write-what-where vulnerability (as assumed in our
threat model) can bypass EPOXY protections.

Fundamentally, information hiding is unlikely to be a
strong defense on embedded systems as such systems tend
to use only a fraction of the address space (and the memory
is directly mapped) which limits the entropy attainable. For
example, our evaluation board only has 2 MB of memory for
code; if each instruction occupies two bytes, randomizing the
code segment provides at most 20 bits of entropy. In contrast,
Silhouette’s defenses are effective even if the adversary has
full knowledge of the memory layout and contents.

Memory Safety Memory safety provides strong protec-
tion but incurs high overhead. Solutions using shadow mem-
ory [2, 3, 32, 47, 62] may consume too much memory for
embedded systems. Other solutions [30, 31, 41, 55, 60] incur
too much performance overhead. nesCheck [53] is a memory
safety compiler for TinyOS [38] applications which induces
6.3% performance overhead on average. However, nesCheck
cannot support binary code libraries as it adds additional ar-
guments to functions. Furthermore, nesCheck’s performance
relies heavily on static analysis. We believe that, due to their
simplicity, the benchmarks used in the nesCheck evaluation
are more amenable to static analysis than applications for
slightly more powerful embedded systems (such as ours). In



contrast, Silhouette’s performance does not depend on static
analysis’s precision.

11 Conclusions and Future Work

In conclusion, we presented Silhouette: a software control-
flow hijacking defense that guarantees the integrity of return
addresses for embedded systems. To minimize overhead, we
proposed Silhouette-Invert, a system which provides the same
protections as Silhouette with significantly lower overhead at
the cost of a minor hardware change. We implemented our
prototypes for an ARMv7-M development board. Our evalua-
tion shows that Silhouette incurs low performance overhead:
a geometric mean of 1.3% and 3.4% on two benchmark suites,
and Silhouette-Invert reduces the overhead to 0.3% and 1.9%.
We are in the process of opening source the Silhouette com-
piler and related development tools. They should be available
at https://github.com/URSec/Silhouette.

We see two primary directions for future work. First, we can
optimize Silhouette’s performance. For example, Section 7.1
shows that Silhouette ensures that the stack pointer stays
within the stack region. Consequently, store instructions using
the sp register and an immediate to compute target addresses
are unexploitable; Silhouette could elide store hardening on
such stores. Second, we can use Silhouette to protect other
memory structures, such as the safe region used in CPI [43]
and the process state saved on interrupts and context switches
(like previous work [26] does).
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Algorithm 1: Silhouette setjmp
Input: A jmp_buf buf

1 foreach entry e in map do
2 if e.buf == &buf then
3 e.{sp, lr, . . . }← {sp, lr, . . . };
4 return 0;
5 end
6 end
7 if map.size < map.capacity then
8 Insert a new entry {&buf, sp, lr, . . . } into map;
9 map.size← map.size +1;

10 return 0;
11 else
12 Error(“Map reached its capacity”);
13 end

a return address from its jmp_buf argument which could be
located in corruptible global, heap, or stack memory. Applica-
tions might also misuse setjmp and longjmp, such as calling
longjmp after the function that called setjmp with the corre-
sponding jmp_buf returns, leading to undefined behaviors ex-
ploitable by attackers. Silhouette modifies the implementation
of setjmp and longjmp to support them while maintaining
its return address integrity guarantees.

Specifically, Silhouette reserves part of the protected
shadow stack region to store a map of active jmp_buf records
in use by the program. Figure 3 shows the format of a map
entry; the address of a jmp_buf passed to setjmp/longjmp
serves as a key, and all callee-saved registers plus sp and lr
are values. Algorithms 1 and 2 depict the design of our cus-
tom setjmp and longjmp, respectively. When the application
calls setjmp, instead of saving the execution context to the
application-specified jmp_buf, Silhouette’s setjmp saves it
to the map by inserting a new entry or overriding an existing
entry, based on the address of jmp_buf. If we are inserting a
new entry and the number of active jmp_buf records reaches
the map’s capacity, Silhouette’s setjmp reports an error and
aborts the program; this is not a practical problem as we ex-
pect the program to have only a few jmp_bufs. We can also
provide an option for the application developer to specify a
desired size of the map. Our store hardening pass will recog-

Address of  
jmp_buf SP LR Callee-Saved Registers...

0x20001000 ... ... ...

... ... ... ...

0x20002000 ... ... ...

0 ... ... ...

... ... ... ...

0 ... ... ...

Active
jmp_buf
Records

Map
Capacity

Figure 3: Format of jmp_buf Records

Algorithm 2: Silhouette longjmp
Input: A jmp_buf buf
Input: An integer val

1 buf_entry← null;
2 foreach entry e in map do
3 if e.buf == &buf then
4 buf_entry← e;
5 break;
6 end
7 end
8 if buf_entry == null then
9 Error(“Invalid jmp_buf”);

10 end
11 foreach entry e in map do
12 if e.sp < buf_entry.sp then
13 Invalidate e;
14 map.size← map.size −1;
15 end
16 end
17 {sp, lr, . . . }← buf_entry.{sp, lr, . . . };
18 if val == 0 then
19 return 1;
20 else
21 return val;
22 end

nize this safe version of setjmp and generate regular stores
(instead of unprivileged stores) for it to access the map. Sav-
ing the execution context in the protected region ensures the
integrity of saved stack pointer values and return addresses.

Silhouette’s longjmp checks if the address of the supplied
jmp_buf matches an entry in the map. If no matched entry
is found, either the supplied jmp_buf is invalid or the sup-
plied jmp_buf has expired due to function returns or a call
to longjmp on an outer-defined jmp_buf (both explained be-
low). In both cases, execution is aborted. If a matched entry
is found, Silhouette’s longjmp first invalidates all entries in
the map that have a smaller sp value than that of the matched
entry; these jmp_bufs become expired when the control flow
is unwound to an outer call site of setjmp. The execution
context stored in the matched entry is then recovered.

The remaining case is that, when a function that calls
setjmp returns, the jmp_bufs used in the function and in
its callees become obsolete. Silhouette handles this case by
inserting code in the epilogue of such functions to invalidate
all the map entries whose sp value is smaller than or equal to
the current sp value. This ensures that future calls to longjmp
do not use obsolete sp and lr values.
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