
DeTRAP: RISC-V Return Address Protection With
Debug Triggers

Isaac Richter
Department of Electrical and Computer Engineering

University of Rochester
Rochester, New York, USA
isaac.richter@rochester.edu

Jie Zhou†

Department of Computer Science
George Washington University

Washington, DC, USA
jie.zhou@gwu.edu

John Criswell
Department of Computer Science

University of Rochester
Rochester, New York, USA

criswell@cs.rochester.edu

Abstract—Modern microcontroller software is often written in
C/C++ and suffers from control-flow hijacking vulnerabilities.
Previous mitigations suffer from high performance and memory
overheads and require either the presence of memory protection
hardware or sophisticated program analysis in the compiler.

This paper presents DeTRAP (Debug Trigger Return Ad-
dress Protection). DeTRAP utilizes a full implementation of
the RISC-V debug hardware specification to provide a write-
protected shadow stack for return addresses. Unlike previous
work, DeTRAP requires no memory protection hardware and
only minor changes to the compiler toolchain.

We tested DeTRAP on an FPGA running a 32-bit RISC-V
microcontroller core and found average execution time overheads
to be between 0.5% and 1.9% on evaluated benchmark suites
with code size overheads averaging 7.9% or less.

I. INTRODUCTION

Modern microcontroller software is mainly written in C and
C++. Unfortunately, these languages are type-unsafe, and pro-
grams written therein may have memory safety vulnerabilities
that can be exploited by control-flow hijacking attacks [57].
While restricting control flow by enforcing Control-flow In-
tegrity (CFI) [1] can mitigate these attacks, previous work has
shown that advanced control-flow hijacking attacks are still
possible if the integrity of function return addresses is not
protected [14], [26], [33]. Worse, programs on all mainstream
architectures, such as x86, ARM, and RISC-V, all suffer from
this problem [21].

Previous work has taken one of two approaches to mitigate
these sophisticated attacks. The first approach protects the
integrity of function return addresses [13], [69], [75]. However,
all of these systems induce execution time and memory
overheads. Some [69] utilize hardware memory protection
features that are intended for privilege domain separation,
such as switching to supervisor mode when manipulating the
shadow stack, but otherwise executing in user mode, requiring
a context switch on every call to a non-leaf function. The most
efficient of these systems is Silhouette [75] which imposes
1.3% performance overhead on CoreMark-Pro [32] and 3.4%
performance overhead on BEEBS [52]. Worse, the code size
overheads for these same benchmarks are 16.5% and 5.3%,
respectively, when the size of untransformed code (namely
libc and libm) are removed from the baseline.

†Contributions made while at the University of Rochester

A second approach is to detect corruption of the return
address; such detection must account for the path that control
flow has taken through the call graph in order to mitigate
sophisticated control-flow hijacking attacks. µRAI [4] is such
a system and has comparable performance overhead to Sil-
houette, averaging 2.6%1, but has code size overheads of
54.1%. µRAI also requires computing a complete call graph
at compile time, which requires sophisticated whole-program
analysis [44]. These overheads hinder adoption in micro-
controllers. Additional overheads can force manufacturers to
choose between higher security at the cost of utilizing more
expensive hardware with faster processors and more memory
or greater cost-efficiency at the cost of security.

Additionally, we seek a solution that requires no new
hardware features. New hardware features must be thoroughly
tested by manufacturers and ratified by standards bodies before
they are implemented and deployed. Since new hardware
support requires “buy-in” from multiple entities, a solution that
uses features already approved by manufacturers and standards
bodies is more likely to gain adoption.

Modern processors, such as ARM [6], [8] and RISC-V [56],
provide sophisticated processor watchpoint features that can
generate a debug watchpoint trap when certain conditions,
configured by software, occur. Unlike earlier processors, these
new debugging facilities can generate a watchpoint trap when
the program counter or a load or store address is within an
arbitrary range, or when the processor is executing a particular
instruction. Furthermore, conditions can be chained together
so that a trap occurs only when multiple conditions are
met. While previous work [60] has employed these hardware
features to implement execute-only memory, we observe that
we can use these features to implement more dynamic security
policies, such as write-protected shadow stacks, which must
distinguish stores that save return addresses from other stores
within a program.

In this paper, we leverage these debugging features to
build Debug Trigger Return Address Protection (DeTRAP):
a system that combines a novel compilation strategy with
modern processor debug facilities to provide an efficient write-

1µRAI’s overhead is 2.6% when a compiler transformation that serendip-
itously improves performance is also applied to the baseline against which
µRAI is compared.

protected shadow stack. Unlike prior work [27], [75], DeTRAP
has minimal hardware requirements: it requires no memory
protection, address translation, or privilege mode hardware.
Furthermore, DeTRAP only uses functionality already spec-
ified in the RISC-V ISA [56], [72], [73]; no new hardware
needs to pass through standards committees. Finally, DeTRAP
does not need sophisticated whole-program call graph analysis.

We prototyped DeTRAP by enhancing the RISC-V Rocket
Core [10] to fully implement the complete RISC-V debugging
facilities [56] (adding just 0.87% to the core pipeline) and
by enhancing the LLVM compiler [43] to implement a write-
protected shadow stack using these debugging features. Our
experimental results show that DeTRAP outperforms previous
work such as Silhouette [75] and µRAI [4]: DeTRAP incurs
execution time overhead of just 0.5% averaged across the
benchmarks in CoreMark-Pro and 0.8% for the BEEBS bench-
marks evaluated by Silhouette [75], an improvement of 0.5%
and 8.5% respectively. Our results also show that DeTRAP
incurs a code size overhead of 7.9% and 6.7%, respectively.
On CoreMark, DeTRAP’s execution time overhead is 1.9%, an
improvement of 5.7% against µRAI [4]; and it has a flash size
decrease of 2.7%, a ∼40% improvement. We further evaluated
against Embench [53] and found performance overhead of
1.4% with a code size decrease of 3.5%.

We evaluated a modification to the rocket core pipeline
to implement the parts of the RISC-V ISA [56] needed for
DeTRAP, and found that it can be done using just 0.14%
additional cell area (pre-routing) in core pipeline.

To summarize, the main contributions of this paper are:
• The design of the first system that uses modern pro-

cessor debugging facilities to implement efficient write-
protected shadow stacks

• A return address integrity system that can support unmod-
ified untrusted leaf functions in precompiled code and
handwritten assembly

• A DeTRAP prototype that implements our design on the
RISC-V Rocket Core [10]

• An evaluation of the hardware changes to Rocket Core
that would be needed to support DeTRAP.

• An evaluation of DeTRAP’s performance and code size
overheads, showing that DeTRAP provides the same
protection as previous work with less performance and
memory overhead. Unlike previous work [4], [75], our
evaluation methodology removes serendipitous code lay-
out changes as the source for improved performance in
our evaluation results.

II. BACKGROUND ON RISC-V DEBUG TRIGGERS

The RISC-V architecture [56] provides a rich set of primi-
tives for specifying the conditions under which the processor
should trigger a breakpoint exception. Breakpoints can be
configured to fire prior to entering a trap handler, after a
configurable number of instructions has been executed, or
based on a comparison against a program counter, load/store
address, instruction opcode, and/or data value loaded from or
stored to memory.

Breakpoint comparisons are not limited to equality check-
ing; comparisons can also be configured to trigger if a value
is less than, greater than or equal to, or unequal to another
value [56]. It is also possible to define a bitmask match,
where selected mask bits of an input value are checked against
the same bits of a stored pattern. This functionality can be used
to raise an exception if a specific instruction is to be executed
regardless of the registers encoded in the opcode.

What makes RISC-V breakpoints particularly powerful is
that multiple debug triggers can be chained together so that
the processor only traps if all conditions in the chain are
met [56]. This feature permits trapping on conditions that are
more complex than can be described by a single comparison.
For example, trapping when executing code within an arbitrary
region can be done by using two triggers, one each for the
region’s lower and upper bounds. The Debug ISA also allows
chained triggers to mix and match what is being compared.
For example, a data value trigger can be chained with a store
address trigger, trapping when the code attempts to write a
specific value to a specific memory location.

Together, these features provide efficient conditional break-
points, alleviating the need to check for conditions in the ex-
ception handler. Furthermore, because debug triggers operate
in parallel with execution, they perform checks without any
per-check performance penalty.

To balance functionality with performance and cost, cur-
rent implementations generally only include a few triggers:
SiFive’s FU540 [64] and FU740 [65] chips only include two
debug triggers per hardware thread (hart). Since triggers are
configured per-hart, this substantially limits their usability, as
applying a policy across all harts requires duplicating the
configuration across them as well, so all policies targeting
these devices must collectively fit into just two triggers.

Moreover, implementations are not required to include all
functionality from the specification. For example, SiFive’s
chips only support matches against the program counter or
load/store address and do not support bitmask matches [62],
[64], [65]; we know of no implementation that matches
against the instruction opcode or loaded/stored data value.
Furthermore, due to hardware tradeoffs, the debug specifica-
tion [56] anticipates that implementors may want to restrict the
complexity of supported triggers. Indeed, many implementa-
tions [10], [62], [64], [65] limit chaining to just two registers.
Supporting longer chains requires additional chip area and
could reduce the maximum pipeline clock frequency.

As Section IV-C discusses, DeTRAP’s design is intended for
single-core microcontrollers, similar to SiFive’s FE310, which
supports 8 triggers on its single hart [62] and allows up to
four two-trigger-chain rules to be defined.

III. THREAT MODEL

Our system protects a single embedded bare-metal applica-
tion running without an operating system kernel or supervisor.
For simplicity, we assume that the application is single-
threaded and does not utilize traps to modify control flow or
to context switch to other tasks, threads, or processes. As

with many embedded applications and processors, we assume
a single address space application running in privileged mode
without any hardware memory protection mechanisms. The
single application is benign and has no runtime-loadable code,
but may have exploitable spatial [57], [68] and temporal [2]
memory safety errors that can corrupt control data such
as return addresses and function pointers. Non-control data
attacks [15] are out of scope.

Physical attacks, such as connecting an external debugger or
modifying the data on volatile or non-volatile memories, are
also out of scope. The damage from attacks on non-volatile
storage can be mitigated through signature checking imple-
mented by trusted boot running from non-reprogrammable
mask ROM [47], [49]. We do not mitigate attacks via
separately-programmed devices that can autonomously modify
system memory, except to the extent that such requests may
be initiated after the processor writes to a memory-mapped
register of the peripheral (e.g., DMA engines [54]).

IV. DESIGN

DeTRAP provides a write-protected compressed shadow
stack which securely stores return addresses. Such a system
has trusted code, which is permitted to save return addresses
to the shadow stack, perform I/O operations, and write to
security-critical data needed for DeTRAP’s operation; the rest
of the code is untrusted code that should be unable to write
to the shadow stack or security-sensitive registers.

In this section, we first present the requirements that
DeTRAP must meet to enforce return address integrity (Sec-
tion IV-A). We then explain how DeTRAP lays out the
address space to minimize the number of debug triggers
it needs (Section IV-B) and how it configures those debug
registers to prevent untrusted code from modifying the shadow
stack or other security-critical data (Section IV-C). Next, we
explain how DeTRAP transforms code to implement a write-
protected shadow stack (Sections IV-E and IV-F). Finally, we
discuss additional precautions that DeTRAP takes to ensure
that its protections will operate as intended (Section IV-G–
Section IV-H).

A. Security Requirements

Our design employs a compressed shadow stack [18].
Silhouette [75] summarizes three high-level invariants that any
shadow stack-based approach for return address integrity must
maintain: (1) A return address is stored either in the shadow
stack or in a register that is never spilled to memory. (2) The
shadow stack and the register for return addresses cannot be
corrupted. (3) A function’s epilogue always retrieves the return
address that is stored by the function’s prologue. For DeTRAP,
we identify five security requirements that must be met to
maintain the three invariants.

First, return addresses are always stored to a trusted location
for use by function epilogues. Specifically:
Requirement 1 Return addresses used for control flow can
only be stored in a dedicated CPU register and the shadow

stack, and the writes of return addresses can only occur in a
function’s prologue. (Sections IV-D and IV-H)

Second, a write-protected shadow stack provides no pro-
tection unless a function’s epilogue reads the return address
from the correct location within the shadow stack. DeTRAP
uses a shadow stack pointer (SSP) which reads/writes return
addresses from/to the shadow stack. The SSP is stored in
a dedicated hardware register. However, this design could
inadvertently access an incorrect return address or an arbitrary
value from outside the write-protected shadow stack if the SSP
points to the wrong location. This leads to
Requirement 2 Return addresses must always be retrieved
from an uncorrupted CPU register or via an uncorrupted
shadow stack pointer. (Sections IV-D, IV-E and IV-G)

Additionally, as DeTRAP protects the shadow stack using
the processor’s debugging facilities, the following requirement
must be met:
Requirement 3 Software cannot reconfigure the processor’s
debug registers to modify its trap conditions. (Section IV-H)

Furthermore, we need to ensure that forward control-flow
transfers (e.g. calls via function pointers) can only target
predetermined destinations. Not only does this mitigate various
control-flow hijacking attacks, e.g., return-to-libc attacks [68],
but it also permits DeTRAP to use code scanning tech-
niques [25], [36], [59] to ensure that untrusted code does not
use instructions that our design deems unsafe. Therefore:
Requirement 4 Indirect function calls/jumps always branch
to the beginning of a function, and intra-function indirect
jumps always use a destination address loaded from their
precomputed jumptable. (Section IV-F)

Finally, as previous work has noted [24], [71], restricting
control flow is useless if an attacker can modify executable
code or CFI metadata. DeTRAP therefore enforces:
Requirement 5 All executable code and any data used to en-
force CFI cannot be corrupted. (Sections IV-B, IV-C and IV-E)

B. Memory Layout

Binary executables typically have separate sections for code,
read-only initialized data (rodata), initialized writable data
(data), and uninitialized writable data (bss). DeTRAP must
prevent corruption of code and security-critical data. DeTRAP
therefore further divides the data sections to distinguish be-
tween those whose integrity it must protect, i.e., sections for
which corruption would violate a security requirement, and
those that can be modified safely by untrusted code.

Thus, we have both untrusted stack and shadow stack sec-
tions, as well as the untrusted data/bss and trusted data/bss
sections. Since the rodata section may include data used for
control flow, such as lookup tables for switch statements,
DeTRAP must also protect its integrity. Most systems include
a memory mapped I/O (MMIO) area for access to peripher-
als and configuring the processor. As some peripherals, such
as direct memory access (DMA) engines [54], could be used
to violate invariants, DeTRAP must also protect the MMIO
area from untrusted writes.

Trusted
Code

Bottom
of
RAM

0x
00
00
00
00

Top
of
RAM

Memory
Mapped
I/O Area

Untrusted
Code

Trusted
rodata/
data/bss

Shadow
Stack

Untrusted
rodata

Untrusted
data/bss

Untrusted
Stack

Untrusted
Heap

Privileged Code Region

Write-Limited Region
(Not to scale)

RAM

Fig. 1: DeTRAP memory layout for systems without separate code and data memories

Like with data, DeTRAP separates code into two sections:
the trusted code section and the untrusted code section,
respectively. DeTRAP prevents untrusted code from corrupting
the shadow stack, trusted data/bss, rodata, and both code
sections. Thus, each section has two DeTRAP-specific at-
tributes: (1) whether the section must be write-limited because
corrupting it could violate a requirement, and (2) if the section
contains privileged code, comprising instructions that are
trusted not to violate requirements when writing to memory.

To reduce the number of debug triggers needed, DeTRAP
groups sections with identical protection requirements into
contiguous regions. We thus define contiguous write-limited
and privileged code regions and their implied complements
(non-write-limited and unprivileged code), and lay out the
sections within their respective regions.

Fig. 1 shows DeTRAP’s memory layout. DeTRAP needs
to define a trigger chain that detects whether an instruction
in the unprivileged code region attempts to write into the the
write-limited region. Since we target a system that only allows
up to two triggers to be chained together, we can only use a
single trigger to match against each region. We anchor each
region at the bottom or top of the address space and use <
and ≥ trigger matches, respectively.

Anchoring the write-limited region at the beginning of
the address space has the added benefit of automatically
including the memory mapped I/O area, protecting against
DMA attacks [54]. Additionally, by placing the non-write-
limited region at the top of the address space and placing
the untrusted stack at the bottom of the non-write-limited
region, DeTRAP can provide free detection of stack overflow
in untrusted code; stack overflows attempt to write to the write-
limited region, generating a trap.

DeTRAP also anchors the privileged code region to the
bottom of the address space, and the privileged code region
includes the memory mapped I/O area. This has the benefit
that ROM routines, which are vetted during hardware design,
can directly write to MMIO addresses.

While there are no hardware-enforced memory protections
against execution outside of code regions, DeTRAP’s forward
CFI protection (Section IV-F) makes it impossible to transfer
control flow outside of the code sections. Hardware memory
protection to control which memory sections are executable is
therefore unneeded.

C. Debug Triggers
We observe that we can leverage the debug triggers, as

discussed in Section II, to enforce a security policy as a

TABLE I: Configured Debug Triggers

Write Protection Chain (Two triggers)
Program Counter ≥ Bottom of Untrusted Code Section
Write Address < Bottom of Untrusted Stack Section

Shadow Stack Overflow Prevention Chain (One trigger)
Write Address = Top of Shadow Stack

chain of trigger conditions. Since software running on the
processor can configure the debug hardware, we can exploit
the debugging facilities not for debugging but to enforce
security policies. As Table I shows, we use three debug triggers
in two chains—one chain with two triggers and the other
trigger by itself—to implement policies that protect DeTRAP’s
sensitive data.

To properly protect the write-limited region, the processor
must trap when code outside the privileged code region
attempts to modify data in the write-limited region. DeTRAP
chains two triggers together to enforce this policy. The first
trigger matches the program counter greater than the top of the
privileged code region, and the second trigger matches mem-
ory write addresses below the top of the write-limited region.
The overall effect is that if untrusted code attempts to modify
the write-limited region, the processor will raise a breakpoint
exception. The runtime’s trap handler (Section IV-E) will
detect that exception and take corrective action.

Additionally, as discussed below in Section IV-G, we use a
debug trigger to detect attempts by any code to write to the
topmost location in the shadow stack, preventing the imminent
overflow thereof.

D. Return Address Handling

DeTRAP’s compiler generates the function prologue and
epilogue code that saves and restores return addresses. For leaf
functions, i.e., functions that do not call other functions, the
prologue saves the return address in an ABI-defined register
that is reserved for return addresses. Since the compiler
generates no other code that writes to this reserved register,
the return address remains safe. Non-leaf functions, though,

1 .section .text
2 foo:
3 j foo$trampoline
4 foo$postjump: #post-jump label
5 addi sp, sp, -FRMSIZE #original prologue

Listing 1: DeTRAP Function Prologue

must use special prologue and epilogue code to safely save
the return address to and restore it from the shadow stack.

Since function prologues write return addresses to the
shadow stack, they must utilize code (called a trampoline)
within the trusted code region. For each non-leaf function,
the DeTRAP compiler generates runtime trampolines, located
within the trusted code region, that writes the return address
to the shadow stack. When a function (e.g., foo) needs to
save its return address, its prologue (see Listing 1) first calls
its associated trampoline (foo$trampoline) in the trusted
code segment. This trampoline (see Listing 2) saves the return
address, which was set by the call instruction, to the write-
protected shadow stack, and then jumps back to the start of its
associated function’s original prologue (foo$postjump).

To optimize performance, when calling a function with
a trampoline, the call is modified to directly branch to the
trampoline (e.g., foo$trampoline). If a function has no
external linkage and all calls to it are replaced by calls to its
trampoline code, the compiler can further reduce code size
by removing the jump to the trampoline (Listing 1 lines 2-3)
from the function’s prologue.

For non-leaf functions, DeTRAP inserts code into the func-
tion epilogue to restore the return address from the shadow
stack (see Listing 3). Unlike function prologues, epilogues
need no trampoline in the trusted code region because they
do not write to the shadow stack. DeTRAP’s code generator,
CFI (Section IV-F), and code scanner (Section IV-H) ensure
that the shadow stack pointer is never corrupted, guaranteeing
that the epilogue always loads the correct return address from
the write-protected shadow stack.

E. Trap Handling

If unprivileged code attempts to write to the write-limited
region or the shadow stack overflows, the debug triggers
described in Section IV-C will cause a trap. To ensure that this
trap is handled properly by trusted code, DeTRAP therefore
performs initial handling of all traps. If the trap is an exception
within trusted code, or was caused by an attempt to violate
DeTRAP’s protections, the handler will terminate execution.
However, not all traps are caused by violations of DeTRAP’s
security requirements, such as timer interrupts. In these cases,
DeTRAP’s handler will create a trap frame and invoke the
application’s (untrusted) handler.

To protect against corruption of potentially sensitive pro-
cessor state, the trap frame is always saved to the shadow
stack. When handling interrupts, this ensures that the untrusted
handler cannot potentially subvert sensitive operations in-
progress (e.g., return address handling code within prologues

1 .section .trusted.text
2 foo$trampoline:
3 sw ra, 0(x3)
4 addi x3, x3, 4
5 j foo$postjump

Listing 2: Return Address Save Trampoline

or epilogues). The untrusted handler can still modify data
outside the write-limited region to, for example, set a flag
or copy data into or out of an I/O buffer.

For exceptions in unprivileged code, the trap frame is copied
onto the untrusted stack for the application’s handler to modify,
with some limitations. The shadow stack pointer and return
address registers are always restored from the trap frame on
the shadow stack, ensuring that they cannot be corrupted.
The untrusted handler can modify the program counter only
to increment it to the next instruction, for example when
emulating a floating-point instruction on a system without a
floating-point unit. Any other modification of the PC could
violate control-flow, and is prohibited. If the untrusted handler
attempts a prohibited modification, this is treated like any other
violation, and execution is terminated.

DeTRAP includes a code scanner (see Section IV-H), which
verifies that untrusted code, including the application’s trap
handler, does not include the trap return (mret) instruc-
tion. Because it is not safe for the untrusted handler to
modify the shadow stack pointer, the application cannot use
the trap handler to transfer control between threads, as in
an interrupt-driven scheduler. If it were necessary to enable
context switching, methodology similar to that of Kage [29]
could be applied—the trusted code could save per-task state
in a per-task shadow stack within the write-limited region and
switch between them on-demand.

F. Forward-edge Control Flow Integrity

DeTRAP’s debugger triggers enforce shadow stack integrity
(Section IV-C), and DeTRAP ensures that trap handlers cannot
corrupt the SSP (Section IV-E). However, to completely pre-
vent the exploitation or misuse of the SSP, DeTRAP also must
ensure that forward-edge control flow cannot transfer to the
middle of function prologues and epilogues. Specifically, inter-
function forward branches must jump to the first instruction
of a function’s prologue, and intra-function branches must
jump to a valid location within the function. Additionally,
on processors supporting variable-length instructions, such
as RISC-V’s “C” Compressed Instruction Extension [72],
DeTRAP must ensure that branches jump to the beginning
of an intended instruction, as there might be a coincidental
and valid sequence of instructions that is an offset from the
intended instructions that could subvert DeTRAP’s security.

For intra-function control-flow integrity, specifically, in-
direct jumps from switch statements, LLVM—the com-
piler upon which DeTRAP is based—compiles them to use

1 # Restore original stack pointer
2 addi sp, sp, FRMSIZE
3 # Load return address from shadow stack
4 lw ra, -4(x3)
5 # Decrement shadow stack pointer
6 addi x3, x3, -4
7 jr ra # Original Function Return

Listing 3: DeTRAP Function Epilogue

a bounds-checked jumptable. For indirect function calls,
DeTRAP uses LLVM’s icall-cfi [19], [67], which pro-
vides type-based CFI, meeting more than the minimum re-
quirements above (more details in Section V-C). A more fine-
grained CFI could provide better protection against forward-
edge threats, such as call-oriented [58] and function-reuse [35]
attacks, but is unnecessary for reverse-edge protection.

Forward-CFI can prevent mismatches between function
prologues and epilogues for most programs. However, mis-
uses of setjmp/longjmp may disrupt the balance. Since
setjmp/longjmp are infrequently used in programs for
embedded systems, we provide our design for handling them
in our technical report [55].

G. Shadow Stack Overflow and Underflow

DeTRAP uses a shadow stack pointer to read/write re-
turn addresses from/to the shadow stack, and keep it from
being corrupted. Although the DeTRAP code scanner (Sec-
tion IV-H), ensures that the SSP is only modified in trusted
code and function epilogues (Section IV-D), it is also nec-
essary to ensure that the SSP cannot underflow or overflow.
While it would be possible to add bounds checks for overflow
after each increment, we instead use an additional debug
trigger that matches on writes to the last entry of the shadow
stack. Because writes to the shadow stack are strictly incre-
mental, this is sufficient to detect an overflow without any
runtime penalties. Underflow would imply either corruption
of the shadow stack pointer, which is checked for by the
code scanner, or a violation of proper control flow (such as
illegal execution of function prologue/epilogue code), which
is handled by DeTRAP’s CFI (Section IV-F). This also allows
DeTRAP to avoid bounds checks for underflow.

H. Code Scanning

After compiling and linking a program, DeTRAP runs a
code scanner on the generated executable and warns about any
vulnerabilities the code scanner discovers. This code scanner
provides two critical services. First, as all code runs in the
processor’s privileged mode, the code scanner ensures that
the program does not use privileged instructions to bypass
DeTRAP’s protections. Second, the code scanner ensures that
all native code (code generated by the DeTRAP compiler,
assembly code written by hand, and code generated by other
compilers) does not break DeTRAP’s security guarantees.

1) External Code: External precompiled code and hand-
written assembly must either use DeTRAP’s return ad-
dress handling (Section IV-D), handwritten or generated via
DeTRAP’s compiler, or consist only of functions that keep
the return address in the ra register (e.g.: leaf functions).
Otherwise, the code scanner will detect unsafe loading of the
return address. It is the user’s responsibility to ensure that any
linked external code that is in the trusted code section does
not violate DeTRAP’s requirements.

2) Configuration Protection: Untrusted code must not mod-
ify the debug trigger or trap handler configurations as doing
so could nullify DeTRAP’s protections. The debug trigger

and trap handler configurations are governed on RISC-V by
Control and Status Registers (CSRs) [56], [73] configured
via the CSRR* instructions [72] that perform a read-modify-
write operation. The CSR to be modified is encoded as an
immediate value embedded in the opcode. The code scanner
assumes that any CSR instruction that is not an atomic
bit set/clear instruction with a hard-coded zero input will
modify its targeted CSR. If the code scanner finds a CSRR
instruction that modifies CSRs governing debugging and trap
handling, it rejects the program; all other CSR modifications
are permitted.

3) Call and Return Verification: We designed DeTRAP so
that all native code loaded on to the system follows DeTRAP’s
requirements. This includes code compiled by the DeTRAP
compiler and external code such as hand-written assembly
language code and library code compiled by other compilers
e.g., a C standard library compiled by GCC. To this end, the
DeTRAP code scanner performs the following checks on all
native code linked into the final binary executable.

First, the code scanner verifies that all indirect branches,
including those in assembly and precompiled code, are pre-
ceded by the appropriate CFI checks as Section IV-F describes.
Second, the code scanner ensures that either the ra register has
not been modified or that it has been spilled and reloaded from
the shadow stack as Section IV-D describes. Additionally, the
code scanner verifies that only function epilogue code modifies
the shadow stack pointer register and that it does so only by
decrementing the register by the correct amount (as shown in
Listing 3). Third, the code scanner verifies that only trusted
code uses the trap return instruction mret [73].

There are some functions that do not follow DeTRAP’s
conventions but are still safe to use, e.g., indirect jumps in
the memset() function in libc. The code scanner permits a
developer who has vetted such jumps to add them to a whitelist
with their destinations. This allows the scanner to confirm that
the functions otherwise meet DeTRAP’s requirements.

V. IMPLEMENTATION

Our implementation is based on a purpose-built runtime
and a modified version of Clang and LLVM [43] 15.0.7.
We also enhanced the Rocket core [10] RISC-V processor to
implement a more recent version of the debug trigger ISA [56]
. As our benchmarks do not use it, we did not implement the
setjmp/longjmp handling.

A. Rocket Core Modifications

The upstream Rocket breakpoint module is based on the
0.13 draft of the RISC-V Debug Support Specification. Im-
plementations are free to support as little of the specification
as they want, using write-any-read-legal (WARL) semantics
such that a read-back of the configuration register will reflect
only what is supported. Unfortunately, Rocket’s breakpoint
module implementation does not properly support combining
both program counter (PC) and memory triggers into the same
chain, even though its WARL read-back implies it should.
This deviation from the specification is undocumented and

prevented DeTRAP from working properly. Because DeTRAP
needs this functionality, we modified the implementation to
properly support such a chain.

In the Rocket core pipeline, the breakpoint module effec-
tively has two breakpoint units (BPUs) that eavesdrop on the
outputs from each stage of execution. The PC BPU monitors
the instruction fetch (IF) stage to determine if a PC trigger
should fire; the MEM BPU checks the input of the memory
(MEM) stage — the output of the execute (EXE) stage — for
matches against memory read or write triggers. For chained
triggers, all triggers in the chain must match during the
same cycle for an exception to be raised. However, each
instruction is executing in only a single pipeline stage at a
time. Consequently, in any given cycle, the breakpoint module
is examining the behavior of different instructions in the PC
and MEM BPUs. What DeTRAP needs is to have the MEM
stage generate a trap if the instruction matched a PC trigger
when it was examined by the PC BPU a few cycles earlier.

We fixed this problem by adding pipeline registers to
the outputs of the instruction decode (ID) and EXE stages
to track whether individual triggers matched the instruction
address. These PC-based “pretriggers” then feed back into
the breakpoint module alongside the memory stage inputs
and are combined with the memory triggers to ensure that
mixed chains properly raise exceptions. Our evaluation in
Section VII-F shows that this change uses negligible additional
area and energy and brings the implementation into compli-
ance with the specification.

B. Shadow Stack Implementation

We modified the Clang/LLVM compiler to implement the
write-protected shadow stack described in Section IV-D. Our
modification of function prologues and epilogues is based
on Clang’s ShadowCallStack [20]. Since we built DeTRAP
before the RISC-V ABI designated x3 as a platform regis-
ter [16], [17] and ShadowCallStack adopted it as the shadow
stack pointer register [41], our implementation uses x18 as
the shadow stack pointer register like the original RISC-V
ShadowCallStack implementation., unlike the code shown
in Listings 2 and 3. Our implementation writes a copy of
the return address to both the shadow stack and the orig-
inal untrusted stack; returns use the write-protected copy
from the shadow stack. This implementation allows existing
code that reads the return address from the stack, such as
__builtin_return_address, to function without mod-
ification. DeTRAP, also like ShadowCallStack [20], merely
uses the return address on the write-protected shadow stack on
function return and does not check whether the return address
restored from the shadow stack matches the return address on
the original untrusted stack.

C. Forward-Edge CFI Implementation

To ease implementation of forward-edge control flow pro-
tection, we used Clang/LLVM’s existing indirect function call
checking -fsanitize=cfi-icall [19], [67]. At compile
time, this CFI creates jumptable entries for each function that

is address-taken, sorted by the function type signature; when
taking the address of a function, it then substitutes the address
of the jumptable entry instead. Indirect calls are rewritten to
verify that the pointer is aligned with and in-bounds of those
jumptable entries that match the expected type signature, and
then the function is called via the jump table entry. This form
of CFI exceeds the minimum requirements for forward-edge
control flow identified in Section IV-F. If greater precision on
forward-edge control flow is desired, an alternative DeTRAP
implementation can use other forward-edge CFI mechanisms
(e.g., label-based CFI [1] with a precise call graph).

D. nospill Attribute for CFI-Sensitive Data
CFI sensitive data is data that is used to check the desti-

nations of indirect branches, including constant values used
in CFI run-time checks and switch statement jump calcu-
lations, and the values of validated pointers. Previous work
has noted that LLVM’s forward-edge CFI implementation [19]
may spill CFI sensitive data to the stack [22], [45], making the
this data vulnerable to memory safety attacks. DeTRAP adds
a new nospill attribute to LLVM IR, which will prevent a
virtual register from being spilled to the stack. We discuss the
details of nospill in our technical report [55].

E. Code Scanner
We implemented the DeTRAP code scanner, discussed in

Section IV-H, using LLVM’s MC disassembler library. The
scanner first identifies all reachable code by examining the
symbol table for all functions, including forward-edge CFI
jumptable entries (see Section V-C) and switch jumptable
destination pointers. It also reads the section headers to be
able to distinguish between trusted and untrusted code.

Next, inspired by the static analyzer of Jalyoan, et. al. [38],
the scanner traces all possible execution paths, generating a
directed graph of basic blocks. The input value for return
instructions (jr ra) is checked to ensure that it is either
unmodified since the preceding call, or was loaded from
the shadow stack.

To handle connecting basic blocks that are linked via
indirect branches, the scanner checks the instructions leading
up to the jump to ensure that the destination is either statically
known (e.g., a long jump, which first requires an auipc [add
upper immediate to PC] instruction before the jr [jump to
offset from register] jump) or is loaded from (switch) or
checked against (indirect call) a jumptable, and the results
are used when connecting the basic blocks. Whitelists were
added for handwritten assembly that performs safe indirect
jumps that do not rely on jumptables (e.g., newlib’s RISC-V
memset, which includes jumps whose offset is directly com-
puted, rather than being loaded from a table).

While tracing the discovered instructions in untrusted code,
the scanner checks for corruption of the shadow stack pointer,
and other dangerous instructions (see Section IV-H).

F. Runtime
Applications are linked to a custom runtime that contains

trusted code, including startup code necessary to implement

TABLE II: Generated System-on-Chip Configuration

Core rv32imafdc at 50 MHz
Branch Target Buffer 28-entry
Branch History Table 512-entry
Return Address Stack 6-entry
Breakpoints 8, address match only
Phys Mem Protection 8 regions, 4 byte granularity
Cache line 64 bytes
L1 Data 64 KiB, 4-way
L1 Code 16 KiB, 2-way
L2 (Shared Inclusive) 256 KiB, 8-way 5 MSHRs
On-board DDR3 256 MiB ×16 at 333 MHz CL5

DeTRAP. Standard library support is provided by the RISC-V
newlib port [51] based on revision 83d4bf, with compiler
support routines from compiler-rt 15.0.7. The runtime also
includes code for tracking and reporting the outputs of per-
formance counters via the serial port.

VI. SECURITY BENEFIT

To examine DeTRAP’s security, we examined its effec-
tiveness against RiscyROP [21]: the most sophisticated at-
tack against RISC-V of which we know. RiscyROP found
that, compared to x86 and ARM32, it is more challenging
to find useful gadgets on RISC-V, due to multiple factors
such as differences in calling conventions. However, it also
found that one can launch powerful code-reuse attacks to
call arbitrary functions with attacker-controlled arguments.
RiscyROP mainly exploits two types of gadgets: (1) those
that load a return address from the stack and return to that
address (called stack-based jump), and (2) those that jump
to an attacker-controlled register (called jump-to-register),
which corresponds to indirect function calls. RiscyROP an-
alyzed libc and several applications and reported that the
majority of gadgets are stack-based jumps,2 which are also
used multiple times in its proof-of-concept attack. DeTRAP
provides RAI, thus preventing stack-based jump gadgets from
being exploited. As a result, DeTRAP can thwart the attack
demonstrated by RiscyROP. Additionally, RiscyROP’s jump-
to-register gadgets can be exploited to target arbitrary loca-
tions, while DeTRAP restricts those gadgets to only target the
beginning of a group of functions using CFI (Section IV-F),
which also mitigates Jump-Oriented Programming [12]. Over-
all, DeTRAP significantly reduces the control-flow hijacking
attack surface for RISC-V.

VII. PERFORMANCE EVALUATION

To evaluate DeTRAP’s performance, we used the Chip-
yard [5] System-on-Chip (SoC) framework version 1.6.2 to
generate verilog for a full system with our modified Rocket
core [10] RISC-V implementation. We ran our design on a
Digilent Arty A7-100T Development Board [28] and used
Xilinx Vivado 2021.2 to synthesize and implement the verilog
to run on the on-board XC7A100TCSG324-1 FPGA.

2Figure 3 of RiscyROP [21] shows the distribution of gadgets, but the paper
does not summarize the statistics.

We configured the SoC to be similar to the SiFive Freedom
E310 [63] Arty (an E31 [61] core implementation for Arty
A7 development boards) and FE310 [62] SoC. To support
large applications that require more memory than available on
the FPGA, such as those in CoreMark Pro [32], we changed
the memory system to be backed by the 256 MiB on-board
DRAM, and use a 256 KiB shared inclusive L2 cache sized
to fit in the remaining FPGA SRAM. The L1 code and data
caches are 16 KiB and 64 KiB, respectively, corresponding to
the sizes of the code and data tightly-integrated memories on
the (F)E310. The L1 data cache is 4-way set associative (the
same as the L1 data caches on an ARM M7 [7] or M55 [9]).
Like in the E310, our L1 code cache is 2-way set associative
but lacks the tightly-integrated memory (ITIM) functionality.
To evaluate benchmarks that use hardware floating-point in-
structions, we added a 64-bit FPU to the core (the FPU is
an optional feature on E31 cores [61]). We also increased
the number of additional event counters from two to the ISA
maximum of 29 for enhanced data collection. Table II shows
the full configuration.

A. Build Configuration

We used our modified Clang/LLVM toolchain and runtime
(see Sections V-C and V-F) to build the evaluated bench-
marks. We compiled all code with -O2 optimizations, link-
time optimization, and linker relaxation enabled. We compiled
benchmarks to use hardware floating-point instructions and the
floating-point ABI. Except for any file-specific or benchmark-
specific flags, all compiler and linker options, including those
for optimization and sanitizers, are common across all sources
(including compiler-rt). We compared this baseline to a binary
that additionally enables DeTRAP protections.

B. Code Layout Effects on Performance

When evaluating benchmark performance, we observed run-
to-run performance variations of less than 0.1%. However, as
also seen in previous work [50], changes in memory layout
impacted performance by 1% or more. For example, a build
with all DeTRAP protections enabled could execute faster than
one with none of its protections, even though the DeTRAP
build executes more instructions.

To reduce the chance that fortuitous memory layouts make
our approach faster, we compiled each benchmark with 100
different layouts: one layout generated by the default settings
in the compiler and linker and 99 pseudorandom layouts
provided by LLD’s --shuffle-sections option [66].
We then report results from the fastest layout of each build.
The fastest layouts of each build are compared to each other
even though they are likely to have been linked with different
--shuffle-sections values. When evaluating generated
code sizes, we also use the sizes for the fastest build.

C. Benchmark Suites

We evaluated several benchmarks. CoreMark-Pro [32]
benchmarks are from revision 4832cc. We set the iteration
count for each benchmark to the smallest value that would still

run for at least 10 seconds. We modified the zip benchmark
to use pre-computed sample data, rather than generating it on-
chip during the untimed initialization phase. Embench [53]
benchmarks are from revision d9b30c. We left the iteration
counts unmodified. The number of iterations of each bench-
mark was based on their scaling factors divided by our proces-
sor’s speed. BEEBS [52] benchmarks were obtained from its
git repository [11], commit 049ded. We set each benchmark’s
iteration count so that it would run for at least 1 second or
100 iterations, whichever was longer. CoreMark [31] is from
revision b24e397 and used unmodified.

For some programs in BEEBS and Embench, the compiler
was able to optimize away the entire benchmark’s compu-
tation. In several cases, constant propagation allowed the
compiler to calculate the benchmark’s result at compile-time,
so the compiler transformed the benchmark to simply output
the precomputed result. For other benchmarks, the result was
never used, so the compiler removed the computation alto-
gether as unnecessary. Alternately, the compiler determined
that each iteration performed an identical computation, and
so emitted code that only performed the computation once
regardless of how many iterations were requested. Affected
Embench benchmarks were identified by manually examin-
ing the generated native code for benchmarks that ran for
less than one second. For BEEBS benchmarks, we ran each
benchmark with varying iteration counts, using the instruction
retire count from each run to establish how many instructions
were run per iteration. We then manually examined the gen-
erated native code for benchmarks that ran fewer than 100
instructions per iteration. Once identified, we added empty
inline assembly statements to prevent these optimizations from
removing the benchmark’s core computation. Inputs were
marked as “written” at the beginning of each iteration and
outputs as “read”. Embench benchmarks modified to prevent
these optimizations were: cubic, st, statemate, and tarfind.
BEEBS benchmarks modified were: aha-compress, bs, crc,
crc32, cubic, fibcall, frac, janne, lcdnum, nbody, newlib-exp,
newlib-mod, ns, qurt, sglib-queue and whetstone. Floating-
point benchmarks that performed verification against expected
values – ludcmp, matmult, nbody, st, and stb perlin – were
modified to allow for a small difference in the expected result
due to floating-point rounding differences. We also fixed out-
of-bounds array accesses in select and qsort, corrected duff to
use the correct source and destination arrays, and modified
function parameter types in sha256 to work properly with
LLVM’s indirect function call type checking.

D. Execution Times

Table III shows runtime performance for the CoreMark-
Pro, Embench, and CoreMark benchmarks. Due to limited
space, Table III only shows a statistical summary of the 80
individual benchmarks in BEEBS; full results from BEEBS
can be found in our technical report [55]. Across all bench-
marks we evaluated, the relative DeTRAP performance ranged
from 0.991× (0.9% faster) to 1.201× (20.1% slower). The

TABLE III: Execution Times

Benchmark -O2 DeTRAP Benchmark -O2 DeTRAP
(s) (×) (s) (×)

CoreMark-Pro
cjpeg 10.51 1.003 parser 11.74 1.006
core 191.1 1.031 radix 10.47 1.000
linear 12.20 1.000 sha 10.18 1.006
loops 51.34 1.002 zip 10.53 1.000
nnet 49.36 1.001
min 10.18 1.000
max 191.1 1.031
geomean 1.005

Embench
aes 3.723 1.000 picojpeg 4.326 1.012
crc32 2.961 1.000 primecount 12.45 1.000
cubic 2.077 1.017 qrduino 3.332 1.001
edn 6.902 1.000 sglib 3.285 1.011
huffbench 2.872 0.999 sha256 3.834 1.035
matmult-int 2.758 1.055 slre 3.464 1.013
md5sum 2.347 0.998 st 0.184 1.000
minver 0.518 1.000 statemate 0.216 1.018
mont64 5.716 1.006 tarfind 1.586 1.001
nbody 0.180 1.000 ud 3.834 1.002
nsichneu 3.097 1.016 wikisort 0.399 1.133
min 0.180 0.998
max 12.45 1.133
geomean 1.014

BEEBS (Summary) CoreMark
min 1.015 0.991
max 1.489 1.201 coremark 10.40 1.019
geomean 1.010

geometric mean across the 112 individual benchmarks was
1.011× (1.1% overhead).

Comparing to Related Work. For the subset of BEEBS
benchmarks reported by Silhouette [75], DeTRAP perfor-
mance ranged from 0.991× to 1.131×, with a geometric mean
of 1.008×. By comparison, Silhouette’s performance overhead
on these benchmarks was between 1.001× and 1.510×, av-
eraging 1.102× — DeTRAP is 8.5% faster. Silhouette also
evaluated CoreMark Pro, with performance between 1.001×
and 1.049×, averaging 1.010× — DeTRAP is 0.5% faster.
Although we did not evaluate against most benchmarks evalu-
ated by µRAI [4], we did run the CoreMark benchmark [31].
DeTRAP’s overhead on CoreMark is 1.9%, while µRAI’s
overhead is 8.1% — DeTRAP is 5.7% faster than µRAI.

E. Code Size

Embedded systems often have limited memory; keeping
code size small is critical. We therefore evaluated DeTRAP’s
code size overheads by measuring the size of the code sections
of each ELF executable. For each build of each benchmark, we
measured size from the memory layout that had the smallest
execution time. Due to limited space, we summarize the
results in Table IV; full results can be seen in our technical
report [55].

DeTRAP has code size overheads that average 4.5% across
all benchmarks. Compared to Silhouette, which had a code size
overhead of 8.9% on CoreMark Pro and 2.3% on a subset of
BEEBS, DeTRAP’s respective overheads are 7.9% and 6.7%
— 1% better and 4.4% worse. However, we note that DeTRAP

TABLE IV: Relative Code Sizes

-O2 DeTRAP -O2 DeTRAP
(KiB) (×) (KiB) (×)

CoreMark-Pro Embench
min 28.50 1.043 min 16.74 0.947
max 52.25 1.238 max 34.43 1.101
geomean 1.079 geomean 0.965

BEEBS CoreMark
min 7.254 0.951
max 28.14 1.375 coremark 22.68 0.964
geomean 1.064

instruments the standard library and board support code, which
Silhouette does not. When we subtract the standard library
code, Silhouette’s average code size overheads become 16.5%
on CoreMark Pro and 5.3% on BEEBS, making DeTRAP’s
overheads 7% better and 1.3% worse respectively.

Instead of evaluating code size, µRAI reports “Flash” uti-
lization, which we understand to include code, read-only data,
and initialized writable data. On CoreMark, µRAI has ∼40%
Flash overhead, while DeTRAP’s code, data, and rodata shows
a 2.7% reduction in size — DeTRAP is ∼40% better.

F. Hardware Utilization

We evaluated the increased chip area (a proxy for manu-
facturing cost) needed to implement the required features for
DeTRAP (see Section V-A). We used Chipyard [5] version
1.10.0’s Hammer [46] VLSI design flow, utilizing Open-
ROAD [3] to implement the design for the Sky130 PDK [30].

The baseline design was a TinyRocketConfig with 4 debug
trigger registers. We compared this to a modified 4-trigger
design that meets DeTRAP’s requirements. Our changes in-
crease the unrouted pipeline core area (not counting cache or
scratchpad) by 0.14%. For comparison, the 20 KiB of SRAM
arrays used by the cache and scratchpad require 800% more
area than a routed pipeline core.

VIII. RELATED WORK

Memory management hardware has been used to mitigate
memory safety attacks, even within single-address-space em-
bedded applications. Kage [29] and Silhouette [75] utilize
the ARM Memory Protection Unit (MPU) to create memory
regions that only normal store instructions can modify; they
then transform all untrusted store instructions into store-with-
translation instructions that cannot write into these protected
regions. They place shadow stacks and other security-critical
data in these protected regions. uXOM [42] uses the same
technique to implement execute-only memory.

RECFISH [69] also uses a MPU-protected shadow stack
but requires a supervisor call to privileged code to push
return addresses. IskiOS [34] leverages Intel PKU [37] to
secure a shadow stack, temporarily enabling writes to the stack
via a configuration register while writing a return address.
CHERI [74] uses hardware-enforced capabilities, ensuring
that new capabilities can be derived only from preexisting
capabilities. Even if an application overwrites a return address,
unless that write happened to be a valid code pointer, attempts

to return to the corrupted address will fail. RetTag [70]
adds pointer authentication instructions to the RISC-V ISA
to authenticate return addresses. In contrast, DeTRAP makes
no ISA modifications, requiring only the existing debug ISA.

µRAI [4] statically computes a complete call graph and
encodes all jumps statically in read-only code jumptables.
A dedicated register encodes the current location on the
call tree, allowing the code to check against each possible
return location, and return specifically to that location. If the
register is corrupted, the jumptable lookup will not find a valid
return address and fail. DeTRAP does not need to compute a
complete callgraph and has less code memory overhead.

O-CFI [48] uses layout modification to ensure that all valid
indirect targets have a known alignment, and clustering, which
allows a bounds check to determine the validity of a branch
target. The location of the table of valid bounds is randomized
and saved only to a register, preventing leaks of the bounds
lookup table’s (BLT’s) base address. However, O-CFI’s pro-
tections will fail if an attacker can find the table, for example
via a side channel attack of the BLT register saved to a kernel
stack, or by scanning read-only memory locations for values
that match a known valid indirect pointer (e.g. a return address
spilled to the stack). Redactor [23] uses execute-only memory
and statically generated trampolines with random memory and
register layouts to prevent an attacker from reliably generating
a usable gadget chain. Moreover, unlike DeTRAP, both O-CFI
and Redactor must compute a reverse control-flow graph ahead
of time, and their reverse CFI is not context-sensitive; an
attacker can potentially redirect reverse control flow to the
wrong caller, even without knowledge of the BLT’s location.
DeTRAP provides context-sensitive reverse CFI, even against
omniscient attackers.

Work most closely related to ours has used debugging
hardware to enforce non-discriminatory security policies that
apply to all code; once configured, enabling access requires
explicitly disabling the watchpoint. PicoXOM [60] provides
execute-only code memory using watchpoint hardware and
prevents reconfiguration of the memory-mapped watchpoint
registers. Jang, et. al. [39] used watchpoints to allow an
application to selectively lock and unlock regions via a system
call; they also use watchpoints to prevent kernel access to user
memory and to make kernel memory execute-only [40].

PHMon [27] adds an execution trace/monitor unit to the
processor core. This monitor includes a small programmable
unit that can perform actions in response to detected events.
One use of the unit is to implement its own shadow stack,
listening for call and return instructions to know when to push
and pop addresses, interrupting the system if it detects a return
to an address that does not match what it saved. Compared
with DeTRAP, PHMon adds substantial hardware to the core,
and because it only monitors a trace of completed execution, it
can only throw a trap after instructions have been committed.

IX. FUTURE WORK

Several directions exist for future work. We can use debug
triggers to solve other security challenges, such as protecting

additional control data [29] or isolating application compo-
nents [36]. We can also explore whether improvements to
debug triggers e.g., new data matching features or longer chain
support, improves their utility for security enforcement.

X. CONCLUSION

We presented DeTRAP which provides embedded appli-
cations with return address integrity by utilizing RISC-V
debug facilities, novel compiler transformations, and a
trusted runtime to protect a shadow stack from cor-
ruption. DeTRAP’s source code is available from
https://github.com/URSec/DeTRAP. This work was supported
by NSF Grants CNS 1652280 and CNS 2154322. The authors
gratefully acknowledge Komail Dharsee for the idea of using
debug triggers to implement a security policy.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information Systems Security, vol. 13, pp. 4:1–4:40, November
2009.

[2] J. Afek and A. Sharabani, “Dangling Pointer: Smashing the Pointer for
Fun and Profit,” in Black Hat USA, 2007.

[3] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an open-source digital
flow: First learnings from the openroad project,” in Proceedings of the
56th Annual Design Automation Conference 2019, ser. DAC ’19. New
York, NY, USA: Association for Computing Machinery, 2019.

[4] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µRAI:
Securing Embedded Systems with Return Address Integrity,” in Proceed-
ings of the Network and Distributed System Security (NDSS) Symposium,
San Diego, CA, USA, February 2020.

[5] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard:
Integrated design, simulation, and implementation framework for custom
socs,” IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[6] ARMv7-M Architecture Reference Manual, Arm Holdings, December
2014, DDI 0403E.b.

[7] ARM Cortex-M7 Processor Technical Reference Manual, Arm Limited,
November 2018, DDI 0489.f.

[8] ARMv8-M Architecture Reference Manual, Arm Limited, October 2019,
DDI 0553B.i.

[9] ARM Cortex-M55 Processor Technical Reference Manual, Arm Limited,
September 2021, document 101051 version 0101-01.

[10] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards,
C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The rocket chip
generator,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[11] “BEEBS git repository.” [Online]. Available: https://github.com/mageec/
beebs

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
Programming: A New Class of Code-reuse Attack,” in Proceedings of
the 6th ACM Asia Conference on Computer & Communications Security
(ASIACCS), Hong Kong, China, 2011, pp. 30–40.

[13] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019,
pp. 985–999.

[14] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in 23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp. 385–399.

[15] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data Attacks Are Realistic Threats,” in Proceedings of the 14th USENIX
Security Symposium (SEC), Baltimore, MD, 2005, pp. 12–12.

[16] K. Cheng, Introduce a new tag, Tag_RISCV_x3_reg_usage. . . .
[Online]. Available: https://github.com/riscv-non-isa/riscv-elf-psabi-
doc/pull/387

[17] ——, Relax gp could be platform specific register. . . . [Online].
Available: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/371

[18] T.-C. Chiueh and F.-H. Hsu, “RAD: a compile-time solution to buffer
overflow attacks,” in Proceedings 21st International Conference on
Distributed Computing Systems, 2001, pp. 409–417.

[19] Clang 13.0 Documentation, Control Flow Integrity. [On-
line]. Available: https://releases.llvm.org/13.0.1/tools/clang/docs/
ControlFlowIntegrity.html

[20] ——, ShadowCallStack. [Online]. Available: https://releases.llvm.org/
13.0.1/tools/clang/docs/ShadowCallStack.html

[21] T. Cloosters, D. Paaßen, J. Wang, O. Draissi, P. Jauernig, E. Stapf,
L. Davi, and A.-R. Sadeghi, “RiscyROP: automated return-oriented
programming attacks on risc-v and arm64,” in Proceedings of the
25th International Symposium on Research in Attacks, Intrusions and
Defenses, ser. RAID ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 30–42.

[22] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. Denver, CO: ACM, 2015, pp. 952–963.

[23] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 763–780.

[24] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels,” in Proceed-
ings of the 35th IEEE Symposium on Security and Privacy (S&P), San
Jose, CA, May 2014, pp. 292–307.

[25] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested Kernel: An Operating System Architecture for Intra-Kernel
Privilege Separation,” in Proceedings of the 20th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Istanbul, Turkey, 2015, pp. 191–206.

[26] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp. 401–416.

[27] L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and
M. Egele, “PHMon: A programmable hardware monitor and its security
use cases,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, August 2020, pp. 807–824.

[28] Digilent, Arty A7 Reference Manual. [Online]. Available: https:
//digilent.com/reference/programmable-logic/arty-a7/reference-manual

[29] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic Control-Flow Protection on Real-Time Embedded Systems
with Kage,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 2281–2298.

[30] R. T. Edwards, “Google/skywater and the promise of the open pdk,” in
Workshop on Open-Source EDA Technology, 2020.

[31] “CoreMark: An EEMBC benchmark.” [Online]. Available: https:
//www.eembc.org/coremark

[32] “CoreMark-Pro: An EEMBC benchmark.” [Online]. Available: https:
//www.eembc.org/coremark-pro

[33] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
Control: Overcoming Control-Flow Integrity,” in Proceedings of the 35th
IEEE Symposium on Security and Privacy (S&P), San Jose, CA, May
2014, pp. 575–589.

[34] S. Gravani, M. Hedayati, J. Criswell, and M. L. Scott, “Fast intra-kernel
isolation and security with iskios,” in 24th International Symposium on
Research in Attacks, Intrusions and Defenses, 2021, pp. 119–134.

[35] Y. Guo, L. Chen, and G. Shi, “Function-oriented programming: A new
class of code reuse attack in c applications,” in 2018 IEEE Conference
on Communications and Network Security (CNS), 2018, pp. 1–9.

[36] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor: Intra-Process Isolation for High-Throughput
Data Plane Libraries,” in 2019 USENIX Annual Technical Conference

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/mageec/beebs
https://github.com/mageec/beebs
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/387
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/387
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/371
https://releases.llvm.org/13.0.1/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/13.0.1/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/13.0.1/tools/clang/docs/ShadowCallStack.html
https://releases.llvm.org/13.0.1/tools/clang/docs/ShadowCallStack.html
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://www.eembc.org/coremark
https://www.eembc.org/coremark
https://www.eembc.org/coremark-pro
https://www.eembc.org/coremark-pro

(USENIX ATC 19). Renton, WA: USENIX Association, Jul. 2019, pp.
489–504.

[37] Intel Corp., “Intel 64 and IA-32 Architectures Software Developer’s
Manual,” April 2021, 325384-074US.

[38] G.-A. Jaloyan, K. Markantonakis, R. N. Akram, D. Robin, K. Mayes,
and D. Naccache, “Return-oriented programming on risc-v,” in Proceed-
ings of the 15th ACM Asia Conference on Computer and Communica-
tions Security, ser. ASIA CCS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 471–480.

[39] J. Jang and B. B. Kang, “In-process memory isolation using hardware
watchpoint,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[40] ——, “Revisiting the ARM Debug Facility for OS Kernel Security,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
ser. DAC ’19. New York, NY, USA: Association for Computing
Machinery, 2019.

[41] P. Kirth, D146463: [CodeGen][RISCV] Change Shadow Call Stack
Register to X3. [Online]. Available: https://reviews.llvm.org/D146463

[42] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM:
Efficient eXecute-Only Memory on ARM Cortex-M,” in Proceedings of
the 28th USENIX Security Symposium, ser. Security ’19. Santa Clara,
CA: USENIX Association, August 2019, pp. 231–247.

[43] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the 2nd Interna-
tional Symposium on Code Generation and Optimization, ser. CGO ’04.
Palo Alto, CA: IEEE Computer Society, 2004.

[44] C. Lattner, A. D. Lenharth, and V. S. Adve, “Making context-sensitive
points-to analysis with heap cloning practical for the real world,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 2007, pp. 278–289.

[45] C. Liebchen, “Clang control flow integrity (cfi) bypass techniques.”
[Online]. Available: https://github.com/0xcl/clang-cfi-bypass-techniques

[46] H. Liew, D. Grubb, J. Wright, C. Schmidt, N. Krzysztofowicz,
A. Izraelevitz, E. Wang, K. Asanović, J. Bachrach, and B. Nikolić,
“Hammer: a modular and reusable physical design flow tool: invited,” in
Proceedings of the 59th ACM/IEEE Design Automation Conference, ser.
DAC ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 1335–1338.

[47] lowRISC contributors, “OpenTitan Security Model Specification.” [On-
line]. Available: https://docs.opentitan.org/doc/security/specs/secure
boot/

[48] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in NDSS, 2015.

[49] B. H. Møller, J. G. Søndergaard, K. S. Jensen, M. W. Pedersen, T. W.
Bøgedal, A. Christensen, D. B. Poulsen, K. G. Larsen, R. R. Hansen,
T. R. Jensen et al., “Preliminary security analysis, formalisation, and
verification of opentitan secure boot code,” in Nordic Conference on
Secure IT Systems. Springer, 2021, pp. 192–211.

[50] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in Proceedings
of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIV.
New York, NY, USA: Association for Computing Machinery, 2009, p.
265–276.

[51] “Risc-v port of newlib.” [Online]. Available: https://github.com/riscv-
collab/riscv-newlib

[52] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, August 2013.

[53] D. Patterson, J. Bennett, P. Dabbelt, C. Garlati, G. S. Madhusudan, and
T. Mudge, “Embench™: An evolving benchmark suite for embedded
iot computers from an academic-industrial cooperative: Towards the long
overdue and deserved demise of dhrystone,” in RISC-V Workshop Zurich,
2019.

[54] D. R. Piegdon and L. Pimenidis, “Hacking in physically address-
able memory,” in Seminar of Advanced Exploitation Techniques, WS
2006/2007, vol. 12, 2007.

[55] I. Richter, J. Zhou, and J. Criswell, “DeTRAP: RISC-V return address
protection with debug triggers,” arXiv preprint arXiv:2408.17248, Au-
gust 2024.

[56] RISC-V Debug Subcommittee, RISC-V Debug Support, 9 February
2022, revision b659d7. [Online]. Available: https://github.com/riscv/
riscv-debug-spec

[57] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-Oriented
Programming: Systems, Languages, and Applications,” ACM Transac-
tions on Information Systems Security (TISSEC), vol. 15, no. 1, pp.
2:1–2:34, Mar. 2012.

[58] A. Sadeghi, S. Niksefat, and M. Rostamipour, “Pure-call oriented
programming (PCOP): chaining the gadgets using call instructions,”
Journal of Computer Virology and Hacking Techniques, vol. 14, no. 2,
pp. 139–156, 2018.

[59] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,
and B. Chen, “Adapting software fault isolation to contemporary CPU
architectures,” in Proceedings of the 19th USENIX Security Symposium,
ser. Security’10. Washington, DC: USENIX Association, 2010, pp.
1–11.

[60] Z. Shen, K. Dharsee, and J. Criswell, “Fast execute-only memory for
embedded systems,” in Proceedings of the 2020 IEEE Secure Devel-
opment Conference, ser. SecDev ’20. Atlanta, GA: IEEE Computer
Society, 2020, pp. 7–14.

[61] SiFive, Inc., SiFive E31 Core Complex Manual. [Online].
Available: https://sifive.cdn.prismic.io/sifive/c29f9c69-5254-4f9a-9e18-
24ea73f34e81 e31 core complex manual 21G2.pdf

[62] ——, SiFive FE310-G003 Manual, version 1.0.1. [Online].
Available: https://sifive.cdn.prismic.io/sifive/3af39c59-6498-471e-9dab-
5355a0d539eb fe310-g003-manual.pdf

[63] ——, SiFive Freedom E310 Arty FPGA Dev Kit Getting Started Guide.
[Online]. Available: https://www.sifive.com/documentation/freedom-
soc/freedom-e300-arty-fpga-dev-kit-getting-started-guide/

[64] ——, SiFive FU540-C000 Manual, version v1p4. [On-
line]. Available: https://sifive.cdn.prismic.io/sifive/d3ed5cd0-6e74-46b2-
a12d-72b06706513e fu540-c000-manual-v1p4.pdf

[65] ——, SiFive FU740-C000 Manual, version v1p6. [Online].
Available: https://sifive.cdn.prismic.io/sifive/1a82e600-1f93-4f41-b2d8-
86ed8b16acba fu740-c000-manual-v1p6.pdf

[66] R. Song, D74791 Add a –shuffle-sections=seed option to lld. [Online].
Available: https://reviews.llvm.org/D74791

[67] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-edge Control-flow Integrity
in GCC & LLVM,” in Proceedings of the 23rd USENIX Conference on
Security Symposium, ser. SEC’14, 2014, pp. 941–955.

[68] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the Expressiveness of Return-into-libc Attacks,” in Proceedings
of the 14th International Conference on Recent Advances in Intrusion
Detection (RAID), Menlo Park, CA, 2011, pp. 121–141.

[69] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and
B. Ward, “Control-flow integrity for real-time embedded systems,” in
31st Conference on Real-Time Systems (ECRTS’19), July 2019.

[70] Y. Wang, J. Wu, T. Yue, Z. Ning, and F. Zhang, “RetTag: hardware-
assisted return address integrity on risc-v,” in Proceedings of the 15th
European Workshop on Systems Security, ser. EuroSec ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 50–56.

[71] Z. Wang and X. Jiang, “HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity,” in Proceedings of the 31st
IEEE Symposium on Security and Privacy (S&P), May 2010, pp. 380–
395.

[72] A. Waterman, K. Asanović, and J. Hauser, Eds., The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Document
Version 20191213. RISC-V Foundation, December 2019. [Online].
Available: https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf

[73] ——, The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, Document Version 20211203. RISC-V International,
December 2021. [Online]. Available: https://github.com/riscv/riscv-isa-
manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

[74] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI Capability Model: Revisiting RISC in an Age of Risk,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 457–468.

[75] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Sil-
houette: Efficient protected shadow stacks for embedded systems,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1219–1236.

https://reviews.llvm.org/D146463
https://github.com/0xcl/clang-cfi-bypass-techniques
https://docs.opentitan.org/doc/security/specs/secure_boot/
https://docs.opentitan.org/doc/security/specs/secure_boot/
https://github.com/riscv-collab/riscv-newlib
https://github.com/riscv-collab/riscv-newlib
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://sifive.cdn.prismic.io/sifive/c29f9c69-5254-4f9a-9e18-24ea73f34e81_e31_core_complex_manual_21G2.pdf
https://sifive.cdn.prismic.io/sifive/c29f9c69-5254-4f9a-9e18-24ea73f34e81_e31_core_complex_manual_21G2.pdf
https://sifive.cdn.prismic.io/sifive/3af39c59-6498-471e-9dab-5355a0d539eb_fe310-g003-manual.pdf
https://sifive.cdn.prismic.io/sifive/3af39c59-6498-471e-9dab-5355a0d539eb_fe310-g003-manual.pdf
https://www.sifive.com/documentation/freedom-soc/freedom-e300-arty-fpga-dev-kit-getting-started-guide/
https://www.sifive.com/documentation/freedom-soc/freedom-e300-arty-fpga-dev-kit-getting-started-guide/
https://sifive.cdn.prismic.io/sifive/d3ed5cd0-6e74-46b2-a12d-72b06706513e_fu540-c000-manual-v1p4.pdf
https://sifive.cdn.prismic.io/sifive/d3ed5cd0-6e74-46b2-a12d-72b06706513e_fu540-c000-manual-v1p4.pdf
https://sifive.cdn.prismic.io/sifive/1a82e600-1f93-4f41-b2d8-86ed8b16acba_fu740-c000-manual-v1p6.pdf
https://sifive.cdn.prismic.io/sifive/1a82e600-1f93-4f41-b2d8-86ed8b16acba_fu740-c000-manual-v1p6.pdf
https://reviews.llvm.org/D74791
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

	Introduction
	Background on RISC-V Debug Triggers
	Threat Model
	Design
	Security Requirements
	Memory Layout
	Debug Triggers
	Return Address Handling
	Trap Handling
	Forward-edge Control Flow Integrity
	Shadow Stack Overflow and Underflow
	Code Scanning
	External Code
	Configuration Protection
	Call and Return Verification

	Implementation
	Rocket Core Modifications
	Shadow Stack Implementation
	Forward-Edge CFI Implementation
	nospill Attribute for CFI-Sensitive Data
	Code Scanner
	Runtime

	Security Benefit
	Performance Evaluation
	Build Configuration
	Code Layout Effects on Performance
	Benchmark Suites
	Execution Times
	Code Size
	Hardware Utilization

	Related Work
	Future Work
	Conclusion
	References

