
Restricting Control Flow During Speculative Execution with Venkman

Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell

Department of Computer Science
University of Rochester

Abstract
Side-channel attacks such as Spectre that utilize speculative
execution to steal application secrets pose a significant threat
to modern computing systems. While program transforma-
tions can mitigate some Spectre attacks, more advanced at-
tacks can divert control flow speculatively to bypass these
protective instructions, rendering existing defenses useless.

In this paper, we present Venkman: a system that employs
program transformation to completely thwart Spectre attacks
that poison entries in the Branch Target Buffer (BTB) and the
Return Stack Buffer (RSB). Venkman transforms code so that
all valid targets of a control-flow transfer have an identical
alignment in the virtual address space; it further transforms
all branches to ensure that all entries added to the BTB and
RSB are properly aligned. By transforming all code this way,
Venkman ensures that, in any program wanting Spectre de-
fenses, all control-flow transfers, including speculative ones,
do not skip over protective instructions Venkman adds to the
code segment to mitigate Spectre attacks. Unlike existing
defenses, Venkman does not reduce sharing of the BTB and
RSB and does not flush these structures, allowing safe sharing
and reuse among programs while maintaining strong protec-
tion against Spectre attacks. We built a prototype of Venkman
on an IBM POWER8 machine. Our evaluation on the SPEC
benchmarks and selected applications shows that Venkman
increases execution time to 3.47× on average and increases
code size to 1.94× on average when it is used to ensure that
fences are executed to mitigate Spectre attacks. Our evalua-
tion also shows that Spectre-resistant Software Fault Isolation
(SFI) built using Venkman incurs a geometric mean of 2.42×
space overhead and 1.68× performance overhead.

1 Introduction

Spectre attacks [20] pose a significant threat to computing
systems. Such attacks can be launched by unprivileged code
and leverage speculative execution within processors to trick
victim programs into leaking confidential data. Current Spec-
tre attacks first direct control flow into infeasible program

paths which load sensitive data (often loaded from an out-of-
bounds array access) into a processor register and then cause
the victim to leak the information via a side channel. To date,
Spectre has been used by malicious processes to steal informa-
tion from other victim processes [20], by malicious JavaScript
code to steal information from the web browser [20], and by
malicious code to steal secrets contained within Trusted Ex-
ecution Environments (TEEs) like Intel SGX [34]. Spectre
attacks work on Intel and AMD x86 processors and on ARM
processors [20], and this work demonstrates that Spectre at-
tacks work on the IBM POWER8 processor. Any processor
implementing speculative execution and branch prediction is
likely vulnerable to Spectre attacks. Consequently, Spectre
poses a significant threat to nearly every laptop, desktop, and
server computer.

Variant-1 Spectre attacks [20] require that victim programs
contain specific code patterns that are exploitable during spec-
ulative execution. Variant-2 Spectre attacks which poison the
processor’s Branch Target Buffer (BTB) [20] or Spectre vari-
ants that poison the Return Stack Buffer (RSB) [21,24] direct
a victim’s control flow to small pieces of code that exhibit
the same behavior even if such paths are infeasible in the pro-
gram’s non-speculative control flow. Spectre attacks which
poison the BTB or RSB [20, 21, 24] are especially nefari-
ous as attackers can use them to bypass instructions inserted
into the program that mitigate Spectre attacks. For example,
Intel suggests adding fence instructions to mitigate Spectre
Variant-1 [16], and Dong et al. [9] propose a software fault
isolation (SFI) [35] mechanism that operates correctly even
when subjected to a Spectre Variant-1 attack. However, if an
attacker poisons the BTB or RSB, speculative execution can
jump straight to load instructions without first executing the
fence or SFI instructions.

For some processors, there are microcode updates that al-
low the operating system (OS) kernel to limit sharing of the
BTB and provide new mechanisms for flushing the BTB and
RSB [16]. However, only processors that use microcode can
be updated without a physical processor replacement, and
microcode updates are not available for all afflicted proces-

1

sors [15]. The only software defense is the retpoline; versions
exist for mitigating BTB poisoning [33] and RSB poison-
ing [24]. However, all retpolines contain an unconditional di-
rect branch instruction. Evidence shows that direct branches
consult the BTB just as computed branches do [10]. This
means that retpolines are likely vulnerable to BTB poisoning.
Additionally, retpolines use return instructions to branch to
target addresses. This makes them inherently incompatible
with control-flow integrity (CFI) defenses [3].

We present a new, comprehensive, software-only defense
against Spectre attacks that poison the BTB and RSB. Named
Venkman, our solution performs two transformations on code
to mitigate Spectre attacks. The first transforms all code on a
system so that it cannot poison the BTB and RSB with target
addresses of the attacker’s choosing. Venkman transforms
programs to group instructions into bundles. All bundles have
the same power-of-two length and are aligned at the same
power-of-two boundary in memory. Venkman then transforms
the program so that all computed branches first align the tar-
get to a bundle boundary. The net effect is that all BTB and
RSB entries for all code on the system are addresses at the
beginning of a bundle. We also propose a system architec-
ture that ensures that all binary code running on a system
has been transformed as described, ensuring that only aligned
bundle addresses are inserted into the BTB and RSB. The
second transformation modifies programs wanting defense
against Spectre attacks by adding instructions into their bun-
dles that mitigate Spectre attacks. For example, this second
transformation can insert fence instructions into each bun-
dle to mitigate all Spectre attacks (as suggested by previous
defenses for Spectre variant-1 [16]), or it can insert Spectre-
resistant SFI instructions [9] into bundles containing load
instructions. Since Venkman ensures that instructions that
need protection from Spectre attacks (such as loads) are in
the same bundle as the instructions providing the protection
(such as fences), training of the BTB and RSB cannot cause
execution to bypass the instructions providing protection. The
second transformation can be excluded on programs that don’t
want Spectre defenses.

We built a prototype of Venkman for the POWER architec-
ture. Our IBM POWER8 machine employs speculative and
out-of-order execution, and we have demonstrated that the
Spectre proof-of-concept code [20], ported to POWER and
changed to poison the BTB, works on our POWER8 machine.
We evaluated the performance of our prototype on the SPEC
CPU 2017 benchmarks and on several real-world applica-
tions. In geometric means, our results show that the bundling
transformation incurs a performance overhead of 1.09× and a
space overhead of 1.61×. Our results also show that Venkman,
when used to ensure that fence instructions are executed to
mitigate Spectre attacks, increases execution time to 3.47× on
average and increases code size to an average of 1.94×. We
have also used Venkman to build a Spectre-resistant sandbox
using SFI; this system has a geometric mean of 2.42× space

overhead and 1.68× performance overhead.
To summarize, our contributions are as follows:

• We have designed a complete software-only solution
that prevents poisoning of the BTB and RSB. To the
best of our knowledge, Venkman is the first complete
software-only solution to such attacks.

• We have evaluated the overheads that Venkman’s
padding and alignment transformations incur and found
that our solution induces a geometric mean of 1.61×
space overhead and 1.09× performance overhead.

• We have evaluated the performance overheads of adding
barrier instructions to mitigate Spectre attacks in code
requiring defense from Spectre attacks. We found that
our solution induces a geometric mean of 1.94× space
overhead and 3.47× performance overhead.

• We have evaluated Venkman in providing an SFI system
that resists Spectre attacks with a geometric mean of
2.42× space overhead and 1.68× performance overhead.

The rest of the paper is organized as follows. Section 2 pro-
vides background on Spectre attacks. Section 3 describes our
threat model. Section 4 describes the design of our defense,
and Section 5 describes the implementation of our prototype.
Section 6 conducts an empirical study of Venkman’s security
guarantees. Section 7 presents our space and performance
evaluation of Venkman, Section 8 examines related work, and
Section 9 concludes and discusses future work.

2 Background on Spectre Attacks

Spectre attacks [18, 20, 21, 24] are a family of attacks that
leverage speculative execution to trick a victim program into
speculatively executing a sequence of instructions which it
normally would not execute. Although the processor will
eventually revert the architectural effects of speculatively exe-
cuted instructions [31], the execution of the instructions may
change the state of internal structures (such as the caches
and branch prediction buffers) within the processor. A typical
Spectre attack consists of two basic steps. First, a processor
is tricked into speculatively executing instructions chosen
by an adversary which load secret data into the processor’s
registers. Second, the adversary uses a side channel, such as
a FLUSH+RELOAD [36] attack on the caches, as a covert
channel to leak the secret information in the registers to the
attacker. There are two major variants of Spectre attacks.
One exploits conditional branches; the other poisons indirect
branches and returns [20, 21, 24].

2.1 Exploiting Conditional Branches
For a conditional branch, modern processors predict whether
the branch will or will not be taken and proceed to specula-

2

1 if (x < arr1_boundary) {
2 y = arr2[arr1[x] * 256];
3 }

Listing 1: Conditional Branch Example

1 (*func_ptr)();
2
3 if (x < arr1_boundary) {
4 load_fence();
5 y = arr2[arr1[x] * 256];
6 }

Listing 2: Indirect Branch Example

tively execute the instructions that it predicts are needed next.
This keeps the processor pipeline busy, increasing through-
put [31].

Consider the conditional branch code in Listing 1. Dur-
ing a Variant-1 Spectre attack [20], before the condition at
Line 1 is resolved, the processor proceeds to speculatively
execute code at Line 2 if the branch predictor predicts that
the condition is true. After the processor determines that x is
not less than the length of the array arr1, it reverts changes
it has made to registers. However, data brought into the cache
during speculative execution remains in the cache. There-
fore, arr2’s element whose index is arr1[x] * 256 is still
within the cache even though it is not needed. If the variable
x is controlled by an attacker, and a secret value is located
at arr1[x], then the attacker can infer the secret data by us-
ing a side-channel attack such as FLUSH+RELOAD [36] or
PRIME+PROBE [28].

Intel [16] recommends placing a load fence (lfence) in-
struction [14] before instructions reading memory that are
control-dependent on branches; a fence makes sure that all
prior instructions are retired before executing subsequent in-
structions, ensuring that the load executes only if it was sup-
posed to be executed.

2.2 BTB and RSB Poisoning
For an indirect branch, before the destination address is re-
solved, the processor consults the BTB (or RSB if the indirect
branch is a return instruction) to predict the next address from
which to fetch instructions [31]. Similar to branch prediction,
this optimization improves the processor’s throughput.

However, an adversary process can poison the BTB and
RSB and trick a victim process into speculatively executing
code gadgets chosen by the adversary [20, 21, 24]. Two fea-
tures enable BTB and RSB poisoning. First, all processes
running on the same physical CPU core share the same BTB
and RSB [11]. Second, the operating system kernel does not
save or flush the state of the BTB and RSB when context
switching between processes or threads, allowing one pro-

cess to add values into the BTB and RSB that are used by a
subsequent process running on the same core. Therefore, a
malicious process can mistrain the BTB and RSB to fill in tar-
get addresses to which it wants a victim to jump. For example,
in Listing 2, an attacker could train the BTB entry for the call
through a function pointer at Line 1 so that it speculatively
jumps straight to Line 5, bypassing the load fence placed
before the load at Line 4. With BTB and RSB poisoning, an
attacker can trick a victim process into executing any code
within the victim’s code segment; the attacker can target code
that leaks sensitive information as described in Section 2.1.

While current Spectre attacks use BTB poisoning to alter
speculative control flow for indirect branches [20], we believe
they can also change the speculative control flow of direct
branches. Evtyushkin et al. [10] demonstrated that an un-
conditional jump can be used to create BTB collisions; they
trained the BTB entries used by direct branches to launch
side-channel attacks against the OS kernel. Even though the
target of a direct branch is specified as an immediate operand
to the instruction, the processor may still use the BTB to pre-
dict the target of a direct branch; this allows the processor
to start fetching instructions at the target of the branch dur-
ing the fetch stage of the processor pipeline before learning
that an instruction is a branch during the decode phase of the
pipeline [31].

The poisoning of targets for direct branches threatens to
break retpolines. Retpolines [24, 33] are the only existing
software defense for Spectre attacks that poison the BTB and
RSB. Retpolines use direct branches to jump to code within
the retpoline. An attacker could poison the BTB entry used
by the direct branch, causing the retpoline to speculatively
execute code at an attacker’s desired location. While existing
Spectre attacks have only exploited the indirect branches [20],
we believe that direct branches are likely to be exploited at
some point. Unlike retpolines [24, 33], Venkman can miti-
gate any type of BTB poisoning as it ensures that only valid
addresses are inserted into the BTB and RSB.

2.3 Read-Only Protection Bypass

Similar to how Meltdown [23] leverages the late enforcement
of user/supervisor protection flags, an attacker can exploit
the late checking of read and write permissions on pages to
change the value read from a write-protected memory location
during speculative execution [18]. Speculative stores com-
bined with store-to-load forwarding could corrupt the code
segment if the instruction fetch unit can read values specu-
latively written to memory that are stored in the processor’s
store buffer. This could allow an attacker to modify instruc-
tions added by a compiler that mitigate Spectre attacks. For
example, the attacker could replace fences or SFI instructions
with NOP instructions, effectively disabling the protections.
Any defense using compiler instrumentation techniques must
defend against speculative modifications to the code segment.

3

3 Threat Model

Our threat model assumes that an attacker will attempt to
steal data with a Spectre attack [20] that poisons the BTB
and/or RSB. Since some processors predict direct branch
targets using the BTB [10], we assume that the attack can
poison both direct and indirect branches and calls. Our model
is restricted to attacks that leak data through the cache via
data accesses. Other potential attacks that leak data through
other side channels, such as the instruction cache, translation
look-aside buffers (TLBs), branch predictors, and functional
units, are out of scope.

Our model is very broad: any piece of software may be a
potential attacker. This includes all user-space software as
well as the OS kernel. A subset of software on the system
comprises potential victims of the attack. This model covers
attacks by one application against another, attacks by a dis-
trusted part against another within one application, attacks
launched by applications against the OS kernel, and attacks
launched by a compromised OS kernel against applications
(similar to the Foreshadow attack [34]).

Our model assumes that the hardware is implemented cor-
rectly with respect to the processor’s instruction set architec-
ture (ISA), meaning that the processor updates memory and
processor registers correctly but that speculative execution
performed by the processor may allow Spectre attacks [20] to
leak information through microarchitectural state.

4 Design

Spectre variants that poison the BTB [20] and RSB [21, 24]
work because one program can insert entries into the BTB
and RSB that are correct for its address space but incorrect
for a victim program in the victim program’s address space.
Venkman transforms all code running on the system so that
any BTB or RSB entry created by one program does not cause
any other program on the system to bypass fence instructions
(or other instructions inserted by a compiler) that protect load
instructions from Spectre attacks. Venkman transforms code
so that instructions are grouped into bundles and then instru-
ments branches to ensure that they can only target the first
instruction in each bundle. As long as load instructions and
the instructions that protect them are within the same bundle,
attackers cannot execute a load without first executing the pro-
tecting instructions. In short, Venkman ensures that branches
can only insert the initial address of a bundle into the BTB
and RSB.

All code running on a system must be transformed as de-
scribed above. We first describe a software architecture that
can ensure that all code on a system has been transformed
using Venkman. We then present how Venkman lays out the
virtual address space of the system to facilitate its instrumen-
tation and how Venkman transforms code to ensure that only
“safe” code addresses are inserted into the BTB and RSB.

LLVM Code for
Unprotected

Program

Binary Code

Native Code
Generation

Execute
Binary Code

Alignment
Verifier

Fail

Alignment
Transform

LLVM Code for
Potential Victim

Native Code
Generation

Deny
Binary

Execution

Pass

Protection
Transform

Figure 1: Venkman Architecture

Finally, we present how Venkman can be used to ensure that
fences are used to prevent loads from accessing invalid mem-
ory and how Venkman can be integrated with Spectre-resistant
SFI [9] to provide speculation-safe sandboxing.

4.1 Venkman Architecture

Venkman must ensure that all code running on the system is
transformed so that the code only inserts “safe” values into
the BTB and RSB as Sections 4.3 and 4.4 will describe. We
therefore need a system that can transform code on site if
possible and verify that binary code from third parties has
already been transformed by Venkman.

Figure 1 shows Venkman’s architecture. Venkman supports
programs encoded in one of two formats. The first format
is native binary code; this is how software is shipped today.
Venkman cannot statically transform such programs due to the
challenges of static binary rewriting e.g., accurate disassembly
of the native code and reconstruction of its control-flow graph
(CFG). However, a binary verifier can verify that the native
code within the executable has already been transformed
as Venkman requires. Binaries can, for example, come with
Typed Assembly Language (TAL) annotations [27] which
can help the verifier efficiently prove that the native code
conforms to Venkman’s requirements. Since the compiler that
created the binary must have transformed it, it can easily insert
the TAL annotations required for verification. A verifier like
RockSalt [26] could be modified to perform the verification
that Venkman requires.

The second program format is LLVM Bitcode [4, 22]. This
format represents programs in a virtual instruction set that
makes program analysis and transformation efficient and ac-
curate. The LLVM virtual instruction set [22] organizes a
program as a set of functions; each function has an explicit
CFG, alleviating the need to reconstruct the CFG from bi-
nary code. Instructions in LLVM virtual instruction set are
in Static Single Assignment (SSA) form [8], allowing effi-
cient SSA-based algorithms to be employed to analyze code.
An extended version of the LLVM virtual instruction set can
encode a complete OS kernel completely within the LLVM
instruction set [7], so both application code and OS kernel
code can be shipped in LLVM Bitcode format.

4

Once Venkman generates native code for an LLVM Bitcode
executable, it passes the native code (annotated with CFG in-
formation) through an optional set of transformations that add
instructions to mitigate Spectre attacks e.g., fence instructions
as Intel recommends [16]. The code is then passed through the
alignment transformations (described in Sections 4.3 and 4.4)
that prevent the program from poisoning BTB and RSB en-
tries. Once transformed, the verifier checks that the BTB and
RSB defenses have been applied correctly before allowing
the code to execute. By reusing the binary verifier to verify
the native code it generates, Venkman removes its compiler
transformations and native code generator from its Trusted
Computing Base (TCB).

On a system running Venkman, the OS kernel and dy-
namic binary loader must already have been transformed with
Venkman. Additionally, the OS kernel must ensure that pro-
grams do not modify or extend their code segments without
the binary verifier first verifying the new code. This can be
accomplished by modifying the mmap() and mprotect() sys-
tem calls in the OS kernel so that they verify code within a
page before making the page executable. Systems such as
SecVisor [30] can ensure that all kernel code has been veri-
fied before it is loaded.

4.2 Virtual Address Space Layout

Venkman divides the virtual address space as Figure 2 depicts.
Venkman places the application code and data in the lower
portion of the virtual address space and kernel code and data
in the upper portion of the virtual address space; this arrange-
ment is used by many current operating systems, including
Linux [5] and FreeBSD [25].

All application code must be located within the lower con-
tiguous portion of the virtual address space denoted as code
segment in Figure 2. Unlike existing systems, this code seg-
ment includes code loaded by the dynamic linker. Likewise,
all kernel code, including the code for dynamically-loaded
kernel modules, must be loaded within the region reserved for
kernel code shown in Figure 2. Venkman must ensure that all
entries in the BTB and RSB are addresses within the applica-
tion code segment or the kernel code segment. By requiring
that all code be loaded within the application or kernel code
segment, and by strategically selecting the placement and size
of these code segments, simple bit-masking of control data
can easily ensure that all computed branches target an address
in the application code segment (for application code) or the
kernel code segment (for kernel code).

We evenly split the code area and the data area (Data Seg-
ment, Heap, and Stack in Figure 2) in the user space; with
this split, Venkman can identify to which area an address
belongs by checking the highest bit (which is the x’th bit
in Figure 2). This helps us implement SFI [35] more easily.
Section 5 explains this choice in more detail.

Our implementation, described in Section 5, reserves 32 KB

of virtual address space at the beginning and at the end of the
code segment; Figure 2 denotes these reserved areas with dark
gray boxes. This platform-dependent change allows Venkman
to enforce SFI with lower overhead on a POWER machine.
Section 5 explains the reasons in detail.

4.3 Code Alignment
Venkman transforms code so that each basic block within the
program has a power-of-two size and is aligned at an address
divisible by the same power-of-two. For example, Venkman
can divide a program’s basic blocks into bundles of 32 bytes
(8 instructions per bundle on a POWER machine) with each
bundle aligned on a 32-byte boundary as Figure 3 shows. Ba-
sic blocks larger than the required size are broken into smaller
basic blocks, and basic blocks smaller than the required size
are padded with NOPs until they are the required size. This
simple transformation creates an invariant for all targets of
control flow transfers: each address to which a branch or call
instruction can jump is aligned on a specific boundary (a
32-byte boundary in our example). Venkman ensures that all
entries in the BTB and RSB fulfill this invariant with static
and dynamic checks; Section 4.4 explains how.

When transforming basic blocks to have the correct size
and alignment, Venkman must enforce several restrictions.
First, any instruction needing protection from a Spectre attack
must appear in the same basic block as the instructions that
protect it. For example, if a defense against Spectre inserts a
load fence before a load instruction, the load fence and the
load must occur within the same bundle. Second, targets of
control flow transfers must be at the start of a basic block. The
alignment of basic blocks ensures that the targets of branch
and call instructions are the first address of a bundle. However,
return addresses require additional processing: call instruc-
tions must always occur at the end of a bundle so that the
return address is the beginning of the next bundle in memory.

4.4 Control Flow Instrumentation
With all basic blocks properly sized and aligned, Venkman
must enforce the following two invariants on entries in the
BTB and RSB:

1. Code Segment: All entries in the BTB and RSB must
be within the application code segment or kernel code
segment. If the processor checks page permissions late
in the pipeline or uses a unified TLB, failure to ensure
this invariant may cause the processor to speculatively
execute data as code.

2. Alignment: All entries in the BTB and RSB must be
aligned to the first address of a basic block (in our run-
ning example, a 32-byte boundary bundle). This prevents
the program from bypassing instructions such as fences
during speculative execution.

5

Figure 2: Venkman Virtual Address Space Layout

0x00: cmpwi r3, 1
0x04: bgt 3

1:

0x08: ld r5, 254(r2)
0x0c: li r4, 123
0x10: stwx r3, r5, r4
0x14: lw r3, -374(r5)
0x18: addi r3, r3, 3
0x1c: mullw r3, r3, r3
0x20: cmplwi r3, 2
0x24: blt 2

2:

0x28: subfic r3, r3, 100
0x2c: extsw r4, r3
0x30: addis r3, r2, -2
0x34: addi r3, r3, -30432
0x38: mr r5, r4
0x3c: bl printf
0x40: nop
0x44: addi r3, r4, 8192
0x48: mtlr r0
0x4c: blr

3:

0x20: ld r5, 254(r2)
0x24: li r4, 123
0x28: stwx r3, r5, r4
0x2c: lw r3, -374(r5)
0x30: addi r3, r3, 3
0x34: mullw r3, r3, r3
0x38: cmplwi r3, 2
0x3c: blt 2

2:

0x00: nop
0x04: nop
0x08: nop
0x0c: nop
0x10: nop
0x14: nop
0x18: cmpwi r3, 1
0x1c: bgt 3

1:

0x60: nop
0x64: nop
0x68: nop
0x6c: nop
0x70: nop
0x74: addi r3, r4, 8192
0x78: mtlr r0
0x7c: blr

4:

0x40: nop
0x44: nop
0x48: subfic r3, r3, 100
0x4c: extsw r4, r3
0x50: addis r3, r2, -2
0x54: addi r3, r3, -30432
0x58: mr r5, r4
0x5c: bl printf

3:

Figure 3: Example of Venkman Code Alignment with 32-Byte
Bundles

Furthermore, Venkman must enforce these invariants even
if the program has memory safety errors.

To do this, Venkman must ensure that all branches, jumps,
and calls target only the first address of an aligned basic
block at run-time. Venkman must enforce this requirement
on direct jumps and calls, indirect jumps and calls, and return
addresses. The processor may use the BTB on both direct and
indirect jumps to determine the next address from which to
fetch instructions, and it will similarly use the RSB for return
instructions [31].

Direct control flow transfers are correct by construction:
the target address is always the beginning of a specific basic
block. Since Venkman aligns the basic block, the target of
direct jumps to a basic block are aligned by construction.

For indirect control flow transfers such as calls through
registers and returns, Venkman must insert bit-masking in-
structions before the indirect jump, indirect call, or return
instruction that align the target of the branch to the beginning
of a bundle. For example, before the return instruction blr in
the last bundle in Figure 3, Venkman inserts instrumentation
instructions to ensure that the link register (which contains
the return address) always point to the beginning of a bundle.
Additionally, the bit-masking must ensure that the target ad-
dress is within the program’s code segment. By placing the

code segment strategically in memory, simple bit-masking of
the higher-order bits suffices.

On processors supporting target operands in memory (e.g.,
ret instructions on x86 [14]), Venkman must transform the
code so that the target address is first loaded into a register,
bit-masked as described above, and then used in an indirect
branch instruction that takes its argument in a register. Oth-
erwise, one thread could corrupt the address in memory and
change its alignment after the bit-masking has occurred but
before the indirect jump uses the target in memory.

The above changes ensure that all values in the BTB are
aligned to a basic block entry point within the code segment.
For the RSB, since call instructions are placed at the end of
a basic block, the return address is constructed to be at the
beginning of the next aligned basic block. This ensures that
all RSB entries are the address of an aligned basic block.

4.5 Speculative Stores to the Code Segment
SFI [35] can be used to prevent an application from specula-
tively reading and writing memory regions to which it does
not have access [9]. On processors that can forward the results
of speculative stores to instruction fetches (as Section 2.3 de-
scribes), we can use Spectre-resistant SFI [9] to ensure that
the instructions that Venkman adds do not get speculatively
overwritten by speculative store instructions. This SFI instru-
mentation inserts instructions before each store instruction to
ensure that the address used in the store instruction is outside
of the application and kernel code segments.

4.6 Venkman with Other Defenses
Venkman provides a framework into which other defenses can
be integrated. For example, existing Spectre attacks [20] leak
secrets through the data cache by using a load on an address
that is computed from the secret data. Venkman can ensure
that all instructions retire before each load to prevent leaks
through the data cache that do not exist within the program’s
non-speculative control flow. For each bundle that has at least
one load instruction, Venkman can insert a barrier instruction,
such as x86’s lfence [14] or POWER’s eieio [13], at the
beginning of the bundle to guarantee that all the instructions
executed prior to loads in the bundle are executed and retire
first. With Venkman, this approach completely thwarts Spectre
Variant-1, Variant-2, and other variants that poison the RSB.
Venkman can also use Spectre-resistant SFI techniques [9] to
prevent load instructions from accessing a specific region of

6

1 clrrdi r1, r1, 5
2 clrldi r1, r1, 19
3 mtlr r1
4 blr

Listing 3: CFI Instrumentation

the virtual address space; this creates a speculation-resistant
sandbox for the application. Section 5 explains in more detail
how we integrate other defenses into Venkman.

5 Implementation

5.1 Base Venkman Implementation

We implemented Venkman by extending the code generator
in the LLVM [22] 4.0 compiler with two new MachineFunc-
tion Passes. To create a prototype of Venkman as quickly as
possible, we opted to build our prototype for the POWER ar-
chitecture first. POWER remains an important and competent
architecture for high performance computing, cloud comput-
ing, and enterprise-level workloads [12]. Our IBM POWER8
machine utilizes speculative out-of-order execution and is
therefore vulnerable to Spectre attacks. Beneficially, POWER
has fixed-sized instructions which hastened development of
our prototype [13]. We leave x86 and ARM implementations
of Venkman for future work.

The first MachineFunctionPass inserts the code that bit-
masks indirect branch targets as Section 4.4 describes. On
POWER, indirect branch targets are stored either in the link
register or the counter register [13]. The first MachineFunc-
tionPass searches for instructions that move values into the
link register and counter register and inserts instructions to
clear the lower-order 5 bits (because we choose to use 32-byte
bundle). Since the counter register is also used for purposes
other than indirect branch targets, our MachineFunctionPass
scans for the next use of the counter register and only bit-
masks the value if the next use of the counter register within
the same function is a branch instruction.

Listing 3 shows an example for a return address (stored in
register r1 that is moved into the link register with the mtlr
instruction. The clrrdi instruction clears the lower 5 bits of
the code pointer stored in r1 so that it is aligned on a bundle
boundary. The clrldi instruction clears the upper 19 bits of
the code pointer to ensure that it is located within the lower
32 TB of the virtual address space where we put the code
segment, as Section 5.3 describes.

The second MachineFunctionPass breaks up basic blocks
and aligns them as Section 4.3 describes. It ensures that all
indirect control flow instructions and the bit-masking inserted
by the previous MachineFunctionPass remain within the same
bundle. Our implementation uses 32-byte bundle, so they are
aligned on 32-byte boundaries.

1 rldicr r1, r1, 32, 63
2 ori r1, r1, 0x2000
3 rldicl r1, r1, 32, 18
4 std r3, 8(r1)

Listing 4: SFI Instrumentation on Stores

1 clrldi r1, r1, 1
2 ld r3, 8(r1)

Listing 5: SFI Instrumentation on Loads

5.2 Venkman with Fences
Our prototype has a command-line option to insert a barrier
instruction (eieio) in each bundle containing at least one
load instruction. The eieio instruction enforces ordering of
memory accesses issued prior to the barrier with memory
accesses issued after the barrier [13]. By placing an eieio
in each bundle that contains one or more load instructions,
we can mitigate Spectre attacks completely by ensuring that
all checks on the pointer used in load instructions retire be-
fore the load instruction commences. We therefore use our
eieio option in experiments to evaluate the performance of
Venkman when it is used to ensure that eieio instructions are
executed before load instructions to mitigate Spectre attacks.

5.3 Venkman with SFI for Stores and Loads
We also implement SFI for Venkman. Our prototype provides
SFI on stores and (optionally) SFI on loads. SFI on stores pre-
vents store-bypass attacks [18] from speculatively modifying
the code segment. SFI on both stores and loads can provide
Spectre-resistant isolation for software plugins. We therefore
implemented sandboxing using Spectre-resistant SFI [9] for
the POWER architecture.

In order to achieve an efficient SFI implementation, we
divide the whole virtual address space for user programs
(0 to 0x3fffffffffff) equally into two regions, one (0
to 0x1fffffffffff) for the code segment and the other
(0x200000000000 to 0x3fffffffffff) for data segments
(which includes global variables, thread stacks, and the heap).
As Section 4.2 describes, in this way we could easily iden-
tify to which region a pointer is pointing by examining the
highest bit used in addressing user space memory (which is
bit 45). Furthermore, since POWER’s D-Form store instruc-
tions [13] allow the target address to be the sum of a register
operand’s contents and a 16-bit signed immediate, Venkman
must reserve a 32-KB hole between 0 and the beginning of
the code segment and another 32-KB hole between the end of
the code segment and the beginning of the first data segment.
In this way, neither a store with a register operand pointing
to the beginning of the data segment and a negative imme-
diate, nor a store with a register operand pointing to the end

7

of virtual address space and a positive immediate, can specu-
latively overwrite the code segment. This narrows down the
code segment region to 0x8000 to 0x1fffffff7fff. With
this arrangement, before every store instruction, our prototype
inserts code that clears bit 45 of the pointer register content
used by the store to ensure that it points outside of the virtual
address region reserved for the code segment.

To evaluate the overhead of SFI on loads for programs
that want to employ sandboxing, we implemented an optional
feature to add SFI instrumentation on loads. Since there is no
special memory region needing protection from speculative
loads in our testing programs, we choose to instrument every
load to ensure that each reads user-space (as opposed to kernel-
space) memory; this is done by inserting code that clears
the most significant bit of the pointer. This instrumentation
is mainly for the purpose of mimicking the code size and
performance overhead of incorporating SFI on loads into our
defenses; it also happens to prevent Meltdown [23] attacks on
the OS kernel.

Listing 4 shows the instrumented code for a D-Form store.
The std instruction takes the sum of the contents of register
r1 and an immediate 8 as the target address, and it stores the
contents of register r3 as a double word into the target address.
Our instrumentation rotates the contents of the pointer by 32
bits, sets bit 13 (bit 45 of the actual pointer), rotates the pointer
back, and clears bits 46 to 63. This ensures that the pointer
always points to memory in the data segments and prevents
speculative writes to the code segment.

Listing 5 shows the instrumentation for a D-Form load.
The clrldi instruction clears the most significant bit of the
contents of register r1, which is used in the ld instruction as
a pointer from which to load. The instrumentation prevents
kernel space memory from being speculatively read by a user
space application.

On POWER, load and store instructions have another form
called X-Form [13]. X-Form loads and stores compute the
target address by adding the contents of two registers (a base
and an index register). For such loads and stores, our prototype
adds code to add the base and index register (placing the result
in the base register), bit-mask the result, and use the result
in a D-Form instruction that replaces the original X-Form
instruction. A subsequent subtract instruction restores the
original contents of the base register.

Our prototype does not use the POWER predicated move
instruction, isel, because our MachineFunction Passes exe-
cute after register allocation. Consequently, use of compare
and isel instructions can overwrite the condition registers.
Our current instrumentation overwrites no condition registers
and can be safely inserted anywhere before a store or a load.

5.4 Limitations

Our current implementation has two limitations. First, we
didn’t instrument the OS kernel with Venkman. Second, we

1 void benign_function(unsigned long x) {
2 return;
3 }
4
5 void victim_function(unsigned long x) {
6 if (x < array1_size)
7 y = array2[array1[x] * 256];
8 }
9

10 void dispatcher(func_t func , unsigned long x) {
11 (*func)(x);
12 }
13
14 int main() {
15 /* Attacker: train BTB */
16 dispatcher(&victim_function , in_bounds_x);
17
18 /* Victim: run */
19 dispatcher(&benign_function , malicious_x);
20
21 /* Attacker: probe cache accesses */
22 probe_cache();
23 }

Listing 6: Core Component of Attack Prototype

didn’t instrument most of the C/C++ standard library code;
the GNU C Library (glibc) and C++ Library (libstdc++) are
tightly bound with the GNU C/C++ compiler (gcc and g++)
and thus cannot be compiled by LLVM/Clang entirely. In-
stead, we opted to compile most of glibc and libstdc++ code
by gcc and g++ with alignment options1and instrument only
exit.c, msort.c, elf-init.c, and libc-start.c in glibc
by Venkman separately. These files contain initialization rou-
tines and library functions that call functions in application
code. Since Venkman inserts bit-masking instructions that
clear the last few bits of indirect branch targets, an instru-
mented callee in application code might return to an incorrect
address in its unaligned caller in library code. For a similar
reason, we also didn’t bit-mask indirect branch targets in some
application functions including main and all global construc-
tors and destructors of C++ programs. These functions are
called by library code that is not instrumented by Venkman.

6 Security Evaluation

To evaluate Venkman’s effectiveness, we implemented
a proof-of-concept Spectre Variant-2 attack on an IBM
POWER8 machine and demonstrated that Venkman with
fences successfully prevents the attack.

We first constructed a working proof-of-concept Spectre
Variant-2 attack on POWER. To construct this attack, we took
the original Spectre Variant-1 attack code in C [20], ported it
to POWER, modified it to perform both Spectre Variant-1 and
Variant-2 attacks, and reused the cache side channel code that

1-falign-functions=32, -falign-jumps=32, -falign-labels=32,
and -falign-loops=32.

8

verifies the data leakage. Listing 6 shows the core component
of our attack code, abstracting away other technical details to
improve clarity. In our proof-of-concept attack, the attacker
and the victim share the same virtual address space, which
is a common scenario (e.g., malicious JavaScript code at-
tacking a web browser). First, the attacker calls dispatcher
with a pointer to victim_function and an in-bounds in-
put, mistraining the processor’s branch predictor and BTB
to trick the processor into believing that the function pointer
call at Line 11 always branches to victim_function and
that the conditional branch at Line 6 is always taken. After
training, the victim then calls dispatcher with a pointer to
benign_function and an attacker-supplied malicious input.
Since the processor has been mistrained, speculative execu-
tion will jump to victim_function, take the conditional
branch, and perform memory accesses that brings contents of
array2 into the cache. Even though the processor eventually
squashes the speculative reads, the attacker infers the secret
data via a cache side channel in probe_cache.

The above attack works on POWER when we compile
the attack code using Clang without Venkman. When we
compile the code with Venkman with fences, the attack no
longer works, showing that Venkman effectively prevents the
Spectre Variant-2 attack.

7 Space and Performance Evaluation

7.1 Experimental Setup
We evaluated Venkman by compiling and running the SPEC
CPU 2017 benchmark suite and several real-world applica-
tions (Nginx, GnuPG, and ClamAV) on a POWER machine.
We used a 64-bit model 2.1 (pvr 004b 0201) 20-core IBM
POWER8 machine running at 4.1 GHz. The machine, running
CentOS 7 Linux with kernel version 3.10.0, has 8 threads per
core and 64 GB of RAM. We compiled the SPEC CPU 2017
benchmarks and applications with both the original LLVM
4.0.1 (as the baseline) and Venkman. We statically linked each
benchmark program and application; as SFI on stores requires
code and data be within separate virtual address regions, static
linking gives us the easiest control of where code and data
sections are loaded. In our experiments, we constantly used 32
bytes as the bundle size which was determined experimentally
to be the best choice on POWER ISA.

For SPEC, we used LLVM’s lit tool to run the SPEC bench-
marks. It measures both the execution time and code size of
the benchmark programs. Of all the SPEC benchmark pro-
grams that LLVM can compile (programs written in C or C++
or both), only 526.blender_r does not build on our POWER
machine because of an incompatible C++ header file. We
therefore exclude it from our experiments.

We begin by evaluating Venkman’s performance on SPEC
when Venkman uses fences to mitigate Spectre attacks. We
then show Venkman’s performance on SPEC when Venkman

Table 1: SPEC CPU 2017 Baseline Code Size

Benchmark Size (Byte) Benchmark Size (Byte)
500.perlbench_r 2,747,020 557.xz_r 681,420
502.gcc_r 9,579,404 600.perlbench_s 2,747,020
505.mcf_r 551,852 602.gcc_s 9,579,404
508.namd_r 1,979,680 605.mcf_s 551,852
510.parest_r 11,339,744 619.lbm_s 553,900
511.povray_r 1,695,168 620.omnetpp_s 3,664,352
519.lbm_r 553,804 623.xalancbmk_s 6,124,896
520.omnetpp_r 3,664,352 625.x264_s 1,102,188
523.xalancbmk_r 6,124,896 631.deepsjeng_s 609,964
525.x264_r 1,102,188 638.imagick_s 2,686,828
531.deepsjeng_r 609,964 641.leela_s 1,354,144
538.imagick_r 2,686,828 644.nab_s 811,660
541.leela_r 1,354,144 657.xz_s 681,420
544.nab_r 811,660

uses Spectre-resistant SFI. Finally, we evaluate Venkman’s
overhead on real-world applications.

7.2 Complete Spectre Defense with Fences
To show how Venkman performs with existing Spectre de-
fenses, we use Venkman plus SFI on stores and eieio in-
structions inserted before the first load in each bundle as
a complete system that defends against Spectre Variant-1,
Variant-2, and Spectre variants that poison the RSB. To study
the sources of overhead, we break down the overhead into
Venkman with just the creation and alignment of bundles
(dubbed Alignment), Venkman with the alignment overhead
and the overhead of bit-masking control data (dubbed CFI),
Venkman with alignment, control data bit-masking, and SFI
on stores (dubbed SFI-Store), and the full protection with
eieio instructions (dubbed Fence). We evaluate this system
and analyze Venkman’s impact on the code size and perfor-
mance of SPEC benchmark programs by comparing it with
the baseline (i.e., the original program compiled with the same
compiler with no Venkman transformations enabled).

Code Size We got the code segment sizes of SPEC bench-
marks from the lit tool running the benchmarks. The code
size information is actually measured using the llvm-size tool
by reading the ELF binaries and reporting size of the text seg-
ment. Since we compiled the benchmark programs statically,
the text segment of a program contains all the library code
that the program uses. Table 1 shows the text segment size of
the SPEC benchmarks compiled by the original Clang, which
is our baseline. Figure 4 shows the text segment size of the
SPEC benchmarks; the results are normalized to the baseline.
It reports the results for our complete system as well as the
breakdown of the code size overhead, showing how much the
overhead is coming from each of the above defenses.

When all the defenses are deployed, the code size over-
head ranges from 1.37× to 2.66× with a geometric mean of
1.93×. As Figure 4 shows, a significant component of the

9

 0

 1

 2

 3

 4

 5

500.perlbench_r

502.gcc_r

505.m
cf_r

508.nam
d_r

510.parest_r

511.povray_r

519.lbm
_r

520.om
netpp_r

523.xalancbm
k_r

525.x264_r

531.deepsjeng_r

538.im
agick_r

541.leela_r

544.nab_r

557.xz_r

600.perlbench_s

602.gcc_s

605.m
cf_s

619.lbm
_s

620.om
netpp_s

623.xalancbm
k_s

625.x264_s

631.deepsjeng_s

638.im
agick_s

641.leela_s

644.nab_s

657.xz_s

geo_m
ean

C
od

e
S

iz
e

N
o

rm
al

iz
ed

 t
o

B
as

el
in

e

Alignment
Alignment + CFI (Venkman)

Venkman + SFI-Store
Venkman + SFI-Store + Fence

Venkman + SFI-Store + SFI-Load

Figure 4: Code Size Overhead on SPEC CPU 2017

Table 2: SPEC CPU 2017 Baseline Execution Time

Benchmark Time (s) Benchmark Time (s)
500.perlbench_r 48.6 557.xz_r 54.7
502.gcc_r 68.4 600.perlbench_s 48.0
505.mcf_r 64.0 602.gcc_s 69.3
508.namd_r 52.1 605.mcf_s 65.0
510.parest_r 68.8 619.lbm_s 237.3
511.povray_r 10.1 620.omnetpp_s 103.6
519.lbm_r 30.1 623.xalancbmk_s 115.3
520.omnetpp_r 99.2 625.x264_s 74.1
523.xalancbmk_r 114.9 631.deepsjeng_s 121.1
525.x264_r 73.8 638.imagick_s 84.0
531.deepsjeng_r 99.6 641.leela_s 132.3
538.imagick_r 83.7 644.nab_s 241.7
541.leela_r 133.1 657.xz_s 50.2
544.nab_r 241.7

space overhead comes from Alignment (from 1.34× to 2.08×
with a geometric mean of 1.61×). SFI-Store also incurs a
non-negligible portion of the overhead (from 2.16% to 68.8%
with a geometric mean of 30.1%) since we instrumented ev-
ery store using 3 to 7 instructions. The rest of the defenses
contributes minor overhead: CFI overhead is from 0.017% to
2.6% with a geometric mean of 0.83%, and Fence overhead
is from 0.18% to 8.3% with a geometric mean of 3.5%.

Performance Table 2 shows the baseline execution time of
the SPEC benchmarks. Figure 5 shows the normalized over-
head on SPEC benchmarks. The results include the overhead
of our complete system, while also providing a breakdown of
the performance overhead. The execution time is measured
by the LLVM Test Suite timing tool called timeit, which mea-
sures the total wall time of a given command by recording the
time difference of two gettimeofday() calls. We ran each
benchmark ten times and report the geometric mean.

As Figure 5 shows, the overhead with all defenses enabled
ranges from 1.87× to 7.72× with a geometric mean of 3.66×.
The performance breakdown shows that, for most of bench-
mark programs, Fence and SFI-Store degrade the performance
most; the overhead is from 1.79× to 7.67× with a geometric

mean of 3.29× and from 1.04× to 1.61× with a geomet-
ric mean of 1.28×, respectively. In contrast, the Venkman
defenses (i.e., Alignment and CFI) only have moderate over-
head: Alignment incurs overhead from 0.95× to 1.21× with
a geometric mean of 1.08×, while CFI incurs overhead from
0.99× to 1.08× with a geometric mean of 1.01×.

Note that we need SFI-Store to protect the code segment
from being speculatively overwritten only if the processor’s
store buffer forwards its content to the instruction fetch unit.
If one needs Venkman to defend against Spectre attacks and
is sure that the processor on which Venkman is deployed does
not forward data in the store buffer to the instruction fetch
unit (which is typically the case if the processor disallows
self-modifying code), then he/she can regain the performance
lost of using SFI-Store by simply disabling SFI-Store.

7.3 Spectre-Resistant Sandboxing
In addition to the evaluation of Venkman with Fence, We also
did experiments on a Spectre-resistant sandboxing system in
which Alignment, CFI, and SFI-Store are still deployed and
Fence is replaced with SFI on loads (dubbed SFI-Load), as
Section 5.3 describes.

Figure 4 reports the code size overhead of the sandboxing
SPEC normalized to the same baseline as in Section 7.2. As
Figure 4 shows, the overall code size overhead of the sand-
boxing ranges from 1.39× to 3.83× with a geometric mean
of 2.38×. SFI-Load’s contribution alone is from 1.03× to
2.32× with a geometric mean of 1.52×. Compared with using
Fence, the sandboxing approach occupies more storage space
because every load is instrumented with 1 to 3 instructions,
whereas only a single eieio instruction is inserted before all
the loads in a bundle using Fence.

Figure 5 reports the performance overhead of the sandbox-
ing normalized to the same baseline as in Section 7.2. As
Figure 5 shows, the sandboxing approach slows down the per-
formance by 1.12× to 2.51× with a geometric mean of 1.74×.
Separating the overhead apart, SFI-Load causes a slowdown
of 7.1% to 68.6% with a geometric mean of 38.8%. Compared

10

 0

 1

 2

 3

 4

 5

 6

 7

 8

500.perlbench_r

502.gcc_r

505.m
cf_r

508.nam
d_r

510.parest_r

511.povray_r

519.lbm
_r

520.om
netpp_r

523.xalancbm
k_r

525.x264_r

531.deepsjeng_r

538.im
agick_r

541.leela_r

544.nab_r

557.xz_r

600.perlbench_s

602.gcc_s

605.m
cf_s

619.lbm
_s

620.om
netpp_s

623.xalancbm
k_s

625.x264_s

631.deepsjeng_s

638.im
agick_s

641.leela_s

644.nab_s

657.xz_s

geo_m
ean

E
xe

cu
ti

o
n

T
im

e
N

o
rm

al
iz

ed
 t

o
B

as
el

in
e

Alignment
Alignment + CFI (Venkman)
Venkman + SFI-Store

Venkman + SFI-Store + Fence
Venkman + SFI-Store + SFI-Load

Figure 5: Performance Overhead on SPEC CPU 2017

 0.85

 0.9

 0.95

 1

 1.05

 1.1

1 2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

B
an

dw
id

th
 N

or
m

al
iz

ed
 t

o
B

as
el

in
e

File Size (KB)

Alignment
Alignment + CFI (Venkman)
Venkman + SFI-Store

Venkman + SFI-Store + Fence
Venkman + SFI-Store + SFI-Load

Figure 6: Throughput Overhead on Nginx

with Fence, SFI-Load boosts the performance of all the bench-
marks, confirming the conclusion that using hardware fences
are much more expensive than creating data dependencies
between protecting and protected instructions [9].

7.4 Application Evaluation

In addition to evaluating standardized benchmarks like SPEC,
we also evaluated Venkman on selected real-world applica-
tions including Nginx, GnuPG, and ClamAV. We chose these
applications because each one represents a different type of
workload (specifically, I/O intensive, CPU intensive, and file
system intensive). These programs may also fall victim to
Spectre attacks [20] as they manipulate sensitive information.

Nginx We evaluated Nginx 1.15.8 to show how Venkman
performs on server applications. Nginx [32] is an open source
web server that is designed for high performance and is
widely deployed. We compiled Nginx with the same con-
figurations as SPEC: baseline, Venkman with SFI-Store and
Fence, Venkman with SFI-Store and SFI-Load, and configu-
rations that enable us to separate the overhead.

We obtained the code segment size of Nginx using the
objdump tool. Table 3 shows both the baseline code size of
Nginx as well as the code size overhead induced by Venkman.

It also reports the breakdown of the overhead. Table 3 shows
that the overall space overhead is 2.04× for Fence and 2.68×
for SFI-Load. Of all the defenses, SFI-Load, Alignment, and
SFI-Store contribute most of the space overhead, which are
67%, 61%, and 39%, respectively. The rest of the defenses
add little space overhead: CFI induces 1%; Fence induces
3%. This roughly conforms with SPEC’s code size overhead
shown in Sections 7.2 and 7.3.

To study Venkman’s impact on Nginx performance, we ran
Nginx compiled by Venkman with 1 worker process deliver-
ing static files ranging in size from 1 KB to 512 MB. The files
were generated by reading bytes from the /dev/urandom
pseudorandom number generator. We used ApacheBench
(ab) [1] as the client running on the same machine as Ng-
inx to measure Nginx’s performance. Since our test machine
has 160 logical cores, the client and server can run on different
logical cores without stealing CPU time from each other when
executed on the same machine. For each configuration and
for each file size, we ran ab for 50 iterations, each iteration
lasting 10 seconds in which ab continuously fetched the same
file until timeout. We then collected performance numbers
from the ApacheBench output and report the geometric means.
Table 4 shows the baseline average file transfer throughput
of Nginx, and Figure 6 shows Venkman’s overhead on Nginx
throughput normalized to baseline. Due to space, we omit
numbers on Nginx latency; they are usually the reciprocal of
the throughput. Standard deviations are also not shown; they
are as much as 4.4%. As Figure 6 shows, Venkman reduces
Nginx’s throughput by at most 10.0% when using Fence and
8.3% when using SFI-Load. Venkman incurs higher over-
head when transferring small files. As file size increases, the
overhead becomes negligible. Overall, Venkman’s impact on
Nginx performance is small but not as clear as on SPEC due
to high standard deviations.

GnuPG We evaluated the code size and performance im-
pact of Venkman on GnuPG 1.4.23. GnuPG [19] is an open
source cryptography program that provides encryption and
signing services. We compiled GnuPG with the same config-

11

Table 3: Application Code Size

Application Baseline (MB) Alignment Alignment + CFI
(Venkman)

Venkman + SFI-
Store

Venkman + SFI-
Store + Fence

Venkman + SFI-
Store + SFI-Load

Nginx 1.20 1.61× 1.62× 2.01× 2.04× 2.68×
GnuPG 1.91 1.62× 1.63× 2.20× 2.27× 3.53×

ClamAV 1.14 1.71× 1.71× 2.02× 2.05× 2.52×

Table 4: Application Baseline Performance Results

File Size (KB) Nginx (MB/s) GnuPG (ms) ClamAV (ms) File Size (KB) Nginx (MB/s) GnuPG (ms) ClamAV (ms)
1 14.3 8.2 73.4 1,024 2247.2 178.0 144.9
2 25.7 8.3 73.4 2,048 2565.1 344.8 217.4
4 48.3 8.4 73.4 4,096 2701.3 684.1 145.8
8 94.4 8.9 73.5 8,192 2655.2 1357.9 651.4

16 185.5 9.8 73.6 16,384 2473.7 2717.5 550.2
32 344.1 12.1 73.8 32,768 2326.2 5414.0 1026.9
64 620.4 17.3 74.4 65,536 2267.6 - 1980.6

128 977.8 27.9 75.6 131,072 2319.2 - 3889.2
256 1438.0 49.0 77.8 262,144 2316.6 - 7701.2
512 1874.6 91.3 82.5 524,288 2319.7 - 9335.1

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768E
xe

cu
ti

on
 T

im
e

N
or

m
al

iz
ed

 t
o

B
as

el
in

e

File Size (KB)

Alignment
Alignment + CFI (Venkman)
Venkman + SFI-Store

Venkman + SFI-Store + Fence
Venkman + SFI-Store + SFI-Load

Figure 7: Performance Overhead on GnuPG Encryption

urations as we did for SPEC and Nginx.
Table 3 provides the code size information of GnuPG. This

information was also collected by the objdump tool. As Ta-
ble 3 shows, when SFI-Load is in place, it contributes to a
significant portion of GnuPG’s code size overhead, resulting
in a 2.33× larger code segment. Alignment and SFI-Store also
cause a non-negligible increase of GnuPG code size, making
it larger by 62% and 57%, respectively. In contrast, CFI and
Fence incur minor space overhead on GnuPG.

We ran GnuPG compiled by Venkman to encrypt, decrypt,
sign, and verify the signatures of files from 1 KB to 32 MB in
size. The files are a subset of the files we used in evaluating
Nginx. For each configuration and for each file size, we ran
GnuPG 10 times and recorded the execution time of each iter-
ation. The geometric mean over all 10 iterations is calculated
and reported. Due to limited space, we only show the GnuPG
encryption results which have the highest performance over-
head among all four functionalities we tested; the other three
exhibited similar but lower overhead. Table 4 lists the baseline
execution time of GnuPG encryption, and Figure 7 shows the
normalized execution time of GnuPG compiled by Venkman.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288E
xe

cu
ti

on
 T

im
e

N
or

m
al

iz
ed

 t
o

B
as

el
in

e

File Size (KB)

Alignment
Alignment + CFI (Venkman)
Venkman + SFI-Store

Venkman + SFI-Store + Fence
Venkman + SFI-Store + SFI-Load

Figure 8: Performance Overhead on ClamAV

The standard deviations are within acceptable ranges and thus
not shown. As Figure 7 shows, Fence hurts performance most,
increasing the execution time to 2.86× to 4.38× with a geo-
metric mean of 3.73×. If we adopt the sandboxing approach
instead, SFI-Load only gives us a 34.4% performance degra-
dation at most. SFI-Store also reports a slowdown of at most
37.9%, while Alignment and CFI incur a minor overhead of
at most 2.6% and 3.1%, respectively.

ClamAV ClamAV [2] is an open source antivirus program
that is typically used for detecting viruses and malware on
mail servers. We compiled ClamAV 0.92 from the LLVM Test
Suite using Venkman with the same configurations as we did
for SPEC, Nginx, and GnuPG, and we report Venkman’s over-
head on ClamAV’s command-line scanning tool clamscan.

Again, Table 3 shows the code size measurements of
ClamAV obtained from objdump. When complete defenses
against Spectre attacks are deployed, Alignment, SFI-Load,
and SFI-Store are the three major sources of ClamAV’s code
size overhead (71%, 50%, and 31%). Fence and CFI, on the
other hand, only expand the code segment slightly (3% and

12

less than 1%, respectively).
To test ClamAV, we used clamscan to scan the files used

in the Nginx experiment for malware. We ran clamscan 10
times for each configuration and for each file size and report
the geometric means. Our ClamAV uses a virus database from
the LLVM Test Suite; while it is old, it works for our perfor-
mance evaluation. Table 4 reports the baseline execution time
of ClamAV scanning various-sized files; Figure 8 shows the
performance overhead incurred by Venkman. The standard
deviations, again, are not shown; they are acceptable with
respect to each configuration. Figure 8 shows that Fence re-
duces performance most, by 2.05× to 3.17× with a geometric
mean of 2.47×. In comparison, SFI-Load’s overhead (at most
41.8%) is much cheaper than Fence. SFI-Store on ClamAV
causes unusually less overhead (at most 5.0%), and Venkman
(Alignment and CFI) adds little to minor overhead.

8 Related Work

There are several software-only approaches that mitigate Spec-
tre Variant-1 [20]. Intel recommends inserting load fences be-
fore load instructions to ensure that branch instructions retire
before loads are executed [16]. Carruth proposed pointer hard-
ening [6] which creates a data dependence between branch
conditions and the pointer used in loads. The compiler inserts
code before loads that will mask the pointer value to zero if
the branch was mispredicted and leave the pointer unaltered
otherwise. Dong et al. [9] developed SFI techniques that work
against Spectre Variant-1 attacks. All of these approaches
are vulnerable to Spectre Variant-2 attacks since poisoning
the BTB [20] or RSB [21, 24] permits an attacker to jump
over the instructions that protect loads. Venkman can protect
these approaches from Spectre Variant-2 attacks if it places
instructions protecting each load in the same bundle as the
load itself. Venkman already does this for load fences [16]
and SFI [9]. Pointer hardening may require a large bundle
size in order to ensure that the bit-masking instructions and
the branch condition are computed within the same bundle;
we leave the integration of pointer hardening with Venkman
to future work.

Spectre Variant-2 poisons the BTB [20], and other variants
poison the RSB [21, 24]. An early mitigation for Spectre
Variant-2, the Retpoline [33] transformation, changes indirect
call and jump instructions into return instructions. A retpoline
explicitly moves the target address of an indirect function call
or jump to the return address on the stack, causing speculation
to predict the target address with the RSB instead of with the
BTB. The retpoline sets up the RSB so that the processor
speculatively executes a busy loop until the target of the return
is read from the stack. As Section 2.2 explains, the processor
uses the BTB to predict the target addresses of direct branches,
making direct branches susceptible to BTB poisoning. In
contrast, Venkman mitigates exploitation of the BTB and
RSB by forcing all control flow targets to be aligned to a

bundle’s start address.
Intel processors provide three hardware mitigations for

BTB poisoning [16]. The first prevents code running at a
lower privilege level from affecting branch prediction for
code running at higher privilege levels. Unfortunately, sev-
eral Spectre attacks [20] target victims running at the same
hardware privilege level as the attacker. In contrast, Venkman
protects software running at all hardware privileges levels.
The second Intel processor defense prevents sharing of BTB
entries between code running on different logical processors.
This defense fails to mitigate attacks by programs executing
on the same logical processor as the victim. Venkman, on
the other hand, protects software regardless of which logical
processors execute the attacker and victim code. The third
defense adds a BTB training barrier command: branch predic-
tions following the barrier do not use BTB entries that were
created on the same logical processor prior to the barrier. This
approach prevents BTB poisoning but reduces performance
as valid BTB entries prior to the barrier are lost. Venkman en-
sures that all BTB and RSB entries are properly aligned on a
bundle boundary, allowing safe sharing of BTB entries across
programs. Only programs using fences or SFI instructions
incur significant performance loss.

Venkman employs transformations similar to those of
Google’s Portable Native Client (PNaCl) [29]. Like PNaCl,
Venkman must break code into individual bundles, align bun-
dles on a constant alignment, and align control data (such as
function pointers) before using them in a branch. However,
since Venkman regulates control flow for speculatively exe-
cuted instructions, it must also place call instructions at the
end of bundles to ensure that return addresses are aligned
to the start of a bundle. It must also ensure that protecting
instructions (e.g., fences and SFI) and protected instructions
(e.g., loads and stores) be located within the same bundle.

9 Conclusions and Future Work

In this paper, we presented and evaluated Venkman, a solution
that thwarts Spectre attacks that poison the BTB and RSB.
To the best of our knowledge, no existing defense completely
mitigates poisoning of these structures. Our evaluation shows
that Venkman increases code size by 1.94× on average. We
also observe an average of 3.47× performance overhead.

Several directions exist for future work. First, we will im-
prove Venkman’s precision. Venkman currently ensures that
speculative execution adheres to a very conservative CFG.
More sophisticated code placement strategies might allow
Venkman to restrict speculative branches to a set of specific
targets. Second, we will investigate whether transformations
like super-block construction [17] and if-conversion [17] can
reduce the number of fences that Venkman inserts by creating
more straight-line code. Finally, we will port Venkman to x86
and ARM.

13

References

[1] Apache HTTP server benchmarking tool. https://
httpd.apache.org/docs/2.4/programs/ab.html.

[2] ClamAV. https://www.clamav.net.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity Principles, Implementa-
tions, and Applications. ACM Transactions on Informa-
tion Systems Security, 13:4:1–4:40, November 2009.

[4] Vikram Adve, Chris Lattner, Michael Brukman, Anand
Shukla, and Brian Gaeke. LLVA: A Low-Level Vir-
tual Instruction Set Architecture. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-36, pages 205–216, San
Diego, CA, 2003. IEEE Computer Society.

[5] Daniel P. Bovet and Marco Cesati. Understanding the
LINUX Kernel. O’Reilly, Sebastopol, CA, 3rd edition,
2005.

[6] Chandler Carruth. Speculative load harden-
ing: A Spectre variant #1 mitigation technique,
2018. Available at https://docs.google.
com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_
61e_Ko3TmoCS3uXLcJR0/edit#heading=h.
phdehs44eom6.

[7] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. Secure Virtual Architecture: A Safe Exe-
cution Environment for Commodity Operating Systems.
In Proceedings of the 21st ACM SIGOPS Symposium
on Operating Systems Principles, SOSP’07, pages 351–
366, Stevenson, WA, 2007. ACM.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently comput-
ing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming
Languages and Systems, pages 13(4):451–490, October
1991.

[9] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox,
and Sandhya Dwarkadas. Spectres, Virtual Ghosts, and
Hardware Support. In Proceedings of the 7th Interna-
tional Workshop on Hardware and Architectural Sup-
port for Security and Privacy, HASP’18, pages 5:1–5:9,
Los Angeles, CA, 2018. ACM.

[10] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over ASLR: Attacking branch predic-
tors to bypass ASLR. In Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-49, pages 40:1–40:13, Taipei, Taiwan,
2016. IEEE Press.

[11] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering, 8(1):1–27, October 2016.

[12] Brian Hall, Peter Bergner, Alon Shalev Housfater, Mad-
husudanan Kandasamy, Tulio Magno, Alex Mericas,
Steve Munroe, Maurício Oliveira, Bill Schmidt, Will
Schmidt, et al. Performance Optimization and Tuning
Techniques for IBM Power Systems Processors Includ-
ing IBM POWER8. IBM Redbooks, 2nd edition, 2015.

[13] IBM. Power ISA™ Version 2.07 B, January 2018.

[14] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, October 2016.

[15] Intel Corporation. Microcode revision guide, April 2018.
https://newsroom.intel.com/microcode.

[16] Intel Corporation. Speculative Execution Side Channel
Mitigations, May 2018. Document Number: 336996-
003.

[17] Ken Kennedy and John R. Allen. Optimizing Com-
pilers for Modern Architectures: A Dependence-based
Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, 2002.

[18] Vladimir Kiriansky and Carl Waldspurger. Speculative
buffer overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, July 2018.

[19] Werner Koch. GnuPG, 1999. https://www.gnupg.
org.

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, SP’19, San
Francisco, CA, 2019. IEEE.

[21] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-
sawneh, Chengyu Song, and Nael Abu-Ghazaleh. Spec-
tre returns! speculation attacks using the return stack
buffer. In Proceedings of the 12th USENIX Workshop
on Offensive Technologies, WOOT’18, Baltimore, MD,
2018. USENIX Association.

[22] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO’04, pages 75–
86, Palo Alto, CA, 2004. IEEE Computer Society.

14

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.clamav.net
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://newsroom.intel.com/microcode
https://www.gnupg.org
https://www.gnupg.org

[23] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel mem-
ory from user space. In Proceedings of the 27th USENIX
Security Symposium, Security’18, pages 973–990, Balti-
more, MD, 2018. USENIX Association.

[24] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’18, pages
2109–2122, Toronto, Canada, 2018. ACM.

[25] Marshall Kirk McKusick, George V. Neville-Neil, and
Robert N. M. Watson. The Design and Implementation
of the FreeBSD Operating System. Addison-Wesley
Professional, 2nd edition, 2014.

[26] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-
Baptiste Tristan, and Edward Gan. RockSalt: Better,
faster, stronger SFI for the x86. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation, PLDI’12, pages 395–
404, Beijing, China, 2012. ACM.

[27] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language. ACM
Transactions on Programming Languages and Systems,
21(3):527–568, May 1999.

[28] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In Pro-
ceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, CT-RSA’06,
pages 1–20, San Jose, CA, 2006. Springer-Verlag.

[29] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting software fault isolation to contemporary CPU

architectures. In Proceedings of the 19th USENIX Secu-
rity Symposium, Security’10, pages 1–11, Washington,
DC, 2010. USENIX Association.

[30] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig.
SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In Proceedings of
21st ACM SIGOPS Symposium on Operating Systems
Principles, SOSP’07, pages 335–350, Stevenson, WA,
2007. ACM.

[31] John Paul Shen and Mikko H. Lipasti. Modern Proces-
sor Design: Fundamentals of Superscalar Processors.
Waveland Press Inc., Long Grove, IL, 1st edition, 2013.

[32] Igor Sysoev. Nginx, 2004. https://nginx.org.
[33] Paul Turner. Retpoline: A software construct for pre-

venting branch-target-injection, January 2018. https:
//support.google.com/faqs/answer/7625886.

[34] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the In-
tel SGX kingdom with transient out-of-order execu-
tion. In Proceedings of the 27th USENIX Security Sym-
posium, Security’18, pages 991–1008, Baltimore, MD,
2018. USENIX Association.

[35] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Iso-
lation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, SOSP’93, pages 203–216,
Asheville, NC, 1993. ACM.

[36] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In Proceedings of the 23rd USENIX Security
Symposium, Security’14, pages 719–732, San Diego,
CA, 2014. USENIX Association.

15

https://nginx.org
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

	Introduction
	Background on Spectre Attacks
	Exploiting Conditional Branches
	BTB and RSB Poisoning
	Read-Only Protection Bypass

	Threat Model
	Design
	Venkman Architecture
	Virtual Address Space Layout
	Code Alignment
	Control Flow Instrumentation
	Speculative Stores to the Code Segment
	Venkman with Other Defenses

	Implementation
	Base Venkman Implementation
	Venkman with Fences
	Venkman with SFI for Stores and Loads
	Limitations

	Security Evaluation
	Space and Performance Evaluation
	Experimental Setup
	Complete Spectre Defense with Fences
	Spectre-Resistant Sandboxing
	Application Evaluation

	Related Work
	Conclusions and Future Work

