CSCI 4907/6545 Software Security
Fall 2025

Instructor: Jie Zhou

Department of Computer Science
George Washington University

GW

Slides materials are partially credited to Gang Tan of PSU and Mathias Payer of EPFL.

Why does software security matter?

2% support.apple.com/en-us/100100

Get the latest software updates from Apple

Keeping your software up to date is one of the most important things you can do to maintain your Apple
product's security.

e The latest version of iOS and iPadOS is 18.6.2. Learn how to update the software on your iPhone or iPad.

The latest version of macOS is 15.6.1. Learn how to update the software on your Mac and how to allow
important background updates.

The latest version of tvOS is 18.6. Learn how to update the software on your Apple TV.

The latest version of watchOS is 11.6.1. Learn how to update the software on your Apple Watch.

The latest version of visionOS is 2.6. Learn how to update the software on your Apple Vision Pro.

Note that after a software update is installed for iOS, iPadOS, tvOS, watchOS, and visionQOS, it cannot be
downgraded to the previous version.

Apple security updates and Rapid Security
Responses

Name and information link Available for Release date

Pro 12.9-inch 3rd generation and later, iPad
Pro 11-inch 1st generation and later, iPad Air
3rd generation and later, iPad 7th generation
and later, and iPad mini 5th generation and
later

i0S 18.6.2 and iPadOS 18.61@‘ iPhone XS and later, iPad Pro 13-inch, iPad 20 Aug 2025

iPadOS 17.7.10 iPad Pro 12.9-inch 2nd generation, iPad Pro 20 Aug 2025
10.5-inch, and iPad 6th generation

macOS Sequoia 15.6.1 macOS Sequoia 20 Aug 2025
macOS Sonoma 14.7.8 macOS Sonoma 20 Aug 2025
macOS Ventura 13.7.8 macOS Ventura 20 Aug 2025
i0S 18.6.1 iPhone XS and later 14 Aug 2025

This update has no published CVE entries.

watchOS 11.6.1 Apple Watch Series 6 and later 14 Aug 2025

This update has no published CVE entries.

Safari 18.6 macOS Ventura and macOS Sonoma 30 Jul 2025

I0S 18.6 and iPadOS 18.6 iPhone XS and later, iPad Pro 13-inch, iPad 29 Jul 2025
Pro 12.9-inch 3rd generation and later, iPad

10S 18.6.2 and iPadOS 18.6.2

Released August 20, 2025

ImagelO

Available for: iPhone XS and later, iPad Pro 13-inch, iPad Pro 12.9-inch 3rd generation and later, iPad Pro
11-inch 1st generation and later, iPad Air 3rd generation and later, iPad 7th generation and later, and iPad
mini 5th generation and later

ImpactcProcessing a malicious image file may result in memory corruption>Apple is aware of a report that
mely sophisticated attack against specific targeted

this issue may have
Individuals.

DescriptioarAn out-of-bounds write issue was addressed with improved bounds checking:

CVE-2025-43300: Apple

peen exploited I

support.apple.com/en-us/100100

Get the latest software updates from Apple

Keeping your software up to date is one of the most important things you can do to maintain your Apple

product's security.

e The latest version of iOS and iPadOS is 18.6.2. Learn how to update the software on your iPhone or iPad.

important background updates.

The latest version of tvOS is 18.6. Learn how to update the software on your Apple TV.

The latest version of macOS is 15.6.1. Learn how to update the software on your Mac and how to allow

The latest version of watchOS is 11.6.1. Learn how to update the software on your Apple Watch.

The latest version of visionOS is 2.6. Learn how to update the software on your Apple Vision Pro.

Note that after a software update is installed for iOS, iPadOS, tvOS, watchOS, and visionQOS, it cannot be

downgraded to the previous version.

Apple security updates and Rapid Security

Responses

Name and information link

10S 18.6.2 and iPadOS 18.6.2

1IPadOS 17.7.10

macOS Sequoia 15.6.1

macOS Sonoma 14.7.8

macOS Ventura 13.7.8

i0S 18.6.1

This update has no published CVE entries.

watchOS 11.6.1

This update has no published CVE entries.

Safari 18.6 (‘§>

10S 18.6 and iPadOS 18.6

Available for

iPhone XS and later, iPad Pro 13-inch, iPad
Pro 12.9-inch 3rd generation and later, iPad
Pro 11-inch 1st generation and later, iPad Air
3rd generation and later, iPad 7th generation
and later, and iPad mini 5th generation and
later

iPad Pro 12.9-inch 2nd generation, iPad Pro
10.5-inch, and iPad 6th generation

macOS Sequoia

macOS Sonoma

macOS Ventura

iPhone XS and later

Apple Watch Series 6 and later

macOS Ventura and macOS Sonoma

iPhone XS and later, iPad Pro 13-inch, iPad
Pro 12.9-inch 3rd generation and later, iPad

Release date

20 Aug 2025

20 Aug 2025

20 Aug 2025

20 Aug 2025

20 Aug 2025

14 Aug 2025

14 Aug 2025

30 Jul 2025

29 Jul 2025

Safari 18.6

Released July 30, 2025

libxml2
Available for: macOS Ventura and macOS Sonoma
Impact: Processing a file may lead to memory corruption

Description: This is a vulnerability in open source code and Apple Software is among the affected projects.
The CVE-ID was assigned by a third party. Learn more about the issue and CVE-ID at cve.org.

CVE-2025-7425: Sergei Glazunov of Google Project Zero

libxslt
Available for: macOS Ventura and macOS Sonoma
Impact: Processing maliciously crafted web content may lead to memory corruption

Description: This is a vulnerability in open source code and Apple Software is among the affected projects.
The CVE-ID was assigned by a third party. Learn more about the issue and CVE-ID at cve.org.

CVE-2025-7424: Ivan Fratric of Google Project Zero

Safari

Available for: macOS Ventura and macOS Sonoma

Impact: Processing maliciously crafted web content may lead to an unexpected Safari crash
Description: A logic issue was addressed with improved checks.

CVE-2025-24188: Andreas Jaegersberger & Ro Achterberg of Nosebeard Labs

WebKit
Available for: macOS Ventura and macOS Sonoma
Impact: Processing maliciously crafted web content may lead to universal cross site scripting

Description: This issue was addressed through improved state management.

WebKit Bugzilla: 285927

CVE-2025-43229: Martin Bajanik of Fingerprint, Ammar Askar

WebKit
Available for: macOS Ventura and macOS Sonoma
Impact: Visiting a malicious website may lead to address bar spoofing

Description: The issue was addressed with improved Ul.

WebKit Bugzilla: 294374

CVE-2025-43228: Jaydev Ahire

WebKit
Available for: macOS Ventura and macOS Sonoma
Impact: Processing maliciously crafted web content may disclose sensitive user information

Description: This issue was addressed through improved state management.

WebKit Bugzilla: 292888

CVE-2025-43227: Gilad Moav

WebKit
Available for: macOS Ventura and macOS Sonoma
Impact: Processing maliciously crafted web content may lead to memory corruption

Description: The issue was addressed with improved memory handling.

WebKit Bugzilla: 291742

CVE-2025-31278: Yuhao Hu, Yan Kang, Chenggang Wu, and Xiaojie Wei

WebKit Bugzilla: 291745

CVE-2025-31277: Yuhao Hu, Yan Kang, Chenggang Wu, and Xiaojie Wei

WebKit Bugzilla: 293579

CVE-2025-31273: Yuhao Hu, Yan Kang, Chenggang Wu, and Xiaojie Wei

WebKit
Available for: macOS Ventura and macOS Sonoma
Impact: A download's origin may be incorrectly associated

Description: A logic issue was addressed with improved checks.

WebKit Bugzilla: 293994

CVE-2025-43240: Syarif Muhammad Sajjad

Safari 18.6

Released July 30, 2025

libxml2

Available for: macOS Ventura and macOS Sonoma

Impact_Processing a file may lead to memory corruption

Description: This is a vulnerability in open source code and Apple Software is among the affected projects.
The CVE-ID was assigned by a third party. Learn more about the issue and CVE-ID at cve.org.

CVE-2025-7425: Sergei Glazunov of Google Project Zero

libxslt

Available for: macOS Ventura and macOS Sonoma

Impac&Processing maliciously crafted web content may lead to memory corruption

Description: This is a vulnerability in open source code and Apple Software is among the affected projects.
The CVE-ID was assigned by a third party. Learn more about the issue and CVE-ID at cve.org.

CVE-2025-7424: lvan Fratric of Google Project Zero

Safari

Available for: macOS Ventura and macOS Sonoma

Impact<®rocessing maliciously crafted web content may lead to an unexpected Safari crash

Description: A logic issue was addressed with improved checks.

How about Android?

< C m 25 source.android.com/docs/security/bulletin/2025-08-01 & &

4B source Docs ~

What's New? Getting Started
= Filter

Overview

Security overview v

Android Security Bulletins A

Bulletins home
Overview
¥ 2025 bulletins
August !
July
June
May
April
March
February
January
Android 16
» 2024 bulletins
» 2023 bulletins
» 2022 bulletins
» 2021 bulletins
» 2020 bulletins
» 2019 bulletins
» 2018 bulletins
» 2017 bulletins
» 2016 bulletins

» 2015 bulletins

Pixel/Nexus bulletins

Android Code Search C(Search / -@-

Security Core Topics Compatibility Android Devices Automotive Reference

2025-08-01 security patch level vulnerability details

In the sections below, we provide details for each of the security vulnerabilities that apply to the 2025-08-01 patch
level. Vulnerabilities are grouped under the component they affect. Issues are described in the tables below and
include CVE ID, associated references, type of vulnerability, severity, and updated AOSP versions (where applicable).
When available, we link the public change that addressed the issue to the bug ID, like the AOSP change list. When
multiple changes relate to a single bug, additional references are linked to numbers following the bug ID. Devices witk
Android 10 and later may receive security updates as well as Google Play system updates.

Framework

The most severe vulnerability in this section could lead to local escalation of privilege with no additional execution
privileges needed. User interaction is needed for exploitation.

CVE References Type Severity Updated AOSP versions
CVE-2025-22441 A-376028556 EoP High 13, 14,15
CVE-2025-48533 A-383131643 EoP High 13, 14,15, 16

System

The vulnerability in this section could lead to remote code execution in combination with other bugs, with no
additional execution privileges needed. User interaction is not needed for exploitation.

CVE References Type Severity Updated AOSP versions

CVE-2025-48530 A-419563680 RCE Critical 16

Google Play system updates

There are no security issues addressed in Google Play system updates (Project Mainline) this month.

2025-08-05 security patch level vulnerability details

Software security threats are ubiquitous!

10

Outline of Today

e Why should we study/research software security?
e Course logistics

* Principles of Building Secure Software Systems

11

Outline of Today’s Lecture

e Why should we study/research software security?

12

Fact 1: Software Has Bugs

BLACK HAT

Windows Update Flaws Allow Undetectable Downgrade
Attacks

Researcher showcases hack against Microsoft Windows Update architecture, turning fixed vulnerabilities into zero-days.

28
By Ryan Naraine n .

August 7, 2024

% .
4 ’
o«
. =
{ e .
.
el - ! 1

DIRTY PIPE

Linux has been bitten by its most high-
severity vulnerability in years

Dirty Pipe has the potential to smudge people using Linux and Linux derivitives.

DAN GOODIN - 3/7/2022, 6:35 PM Th e M aC SeC u rity B | Og Search the Blog

Share Popular Stories

APPLE
~ Porn blackmail "sextortion"

Apple still leaving critical vulnerabilities X
unpatched in macOS Sonoma Anew scam

Posted on August 1st, 2024 by Joshua Long

¥
i How to Install macOS Sonoma
(or Sequoia) on Unsupported
Macs, for Security
Improvements

LAS VEGAS — SafeBreach Labs researcher Alon |
major gaps in Microsoft’'s Windows Update archi

0600

hackers can launch software downgrade attacks
D ‘1 The Complete Guide to Apple

Watch Bands in 2024: Sizing,
Styles, and More

meaningless on any Windows machine in the wo
PRINT
How to run Windows 11 for

FREE on a Mac with an M1, M2,
or M3 chip

Follow Intego

X1 £ ICA)in|@]@

As we first noted in November 2023, macOS Sonoma contains some very outdated

open-source software components. (Free/libre open-source software is commonly
abbreviated as FOSS or FLOSS.) This outdated software puts Mac users at serious risk.
We've reached out to Apple multiple times about this, and Apple still hasn’t responded. Recommended

Here’s what we know. SECURITY & PRIVACY

Definition: Software Bug

y, Wikipedia: “A software bug is a bug in computer software.”

D w Wikipedia: “In engineering, a bug is a design defect in an

N engineered system that causes an undesired result.”

nttps://en.wikipedia.org/wiki/Software bug

nttps://en.wikipedia.org/wiki/Bug (engineering)

https://en.wikipedia.org/wiki/Bug_(engineering)
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Software_bug

Definition: Software Bug

y, Wikipedia: “A software bug is a bug in computer software.”

. r Wikipedia: “In engineering, a bug is a design defect in an

N engineered system that causes an undesired result.”

nttps://en.wikipedia.org/wiki/Software bug

nttps://en.wikipedia.org/wiki/Bug (engineering)

https://en.wikipedia.org/wiki/Bug_(engineering)
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Software_bug

It Is Too Easy to Write Bugs

1 #include <stdio.h>
2
3 int main(int argc, char xargv[]) {

4 char user name[32];

5 scanf("%s", user name):

6 printf("Hello, %s!\n", user_name);
7}

l@i What if user’'s name is longer than 32 characters?

(@)- What if the user deliberately/maliciously input
something longer than 32 characters?

16

Fact 2: Many Bugs Are Exploitable (Causing Damage)

YOUR FILES HAS BEEN ENCRYPTED!
YOUR FILES WILL BE LOST

TIME LEFT
00:00:00

SEND $500 WORTH BITCOIN TO THIS ADDRESS:
9 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9

Ransomeware Botnet Spyware

e.g. WannaCry e.g. Mirai e.g. Pegasus

17

Bugs vs. Vulnerabilities

y, Wikipedia: “A software bug is a bug in computer software.”

. r Wikipedia: “In engineering, a bug is a design defect in an

N engineered system that causes an undesired result.”

18

Bugs vs. Vulnerabilities

y, Wikipedia: “A software bug is a bug in computer software.”

. r Wikipedia: “In engineering, a bug is a design defect in an

N engineered system that causes an undesired result.”

Wikipedia: “Vulnerabillities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabilities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability (computer security)

19

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

The Morris Worm

The Morris Internet Worm source code

This disk contains the complete source code of the Morris Internet
worm program. This tiny, 99-line program brought large pieces
of the Internet to a standstill on November 2™ 1988.

1
The worm was the first of many intrusive programs that use the
Internet to spread.
I 1o Computer
] I -
,r, o History
121" Museum

1

20

The Morris Worm

Brought down most of the Internet on November 2nd, 1988.

« Buffer overflow in T1ngerd, injected shellcode and commands
 Debug mode in sendmail to execute arbitrary commands
e Dictionary attack with frequently used usernames/passwords

+» Buggy worm: A type of malicious program (malware) that self-replicates
and spreads across networks to affect as many machines as possible.

21

OpenSSL Heartbleed Vulnerability

The ‘Heartbleed’ security flaw that affects most
of the Internet

er Y,
@ 2 minute read - Updated 5:11 PM EDT, Wed April 9, 2014

il X & &

22

OpenSSL Heartbleed Vulnerability

* A programming bug in the OpenSSL implementation’s HeartBeat mechanism

» Used In numerous web servers

* The bug: lack of input validation

> An attacker can send in a HeartBeat request, which contains a message
and a length.

- The length should correspond to the message’s size.

* Attacker can
» Send in a request with a large length, greater than the message’s size

> Hence the attacker can get a slice of data from server’s main memory -- one
that is up to 64KB In length.

> That memory could contain the private key of the server (or users’ passwords).

23

Fix for Heartbleed

The fix is equally simple. Just add a bounds check:

i+ /* Read type and payload length first */

+ 1f (1 + 2 + 16 > s->s3->rrec.length)

i+ return @; /* silently discard */

+ hbtype = *p++;

+ n2s(p, payload);

= 1f (1 + 2 + payload + 16 > s->s3->rrec.length)

+ return @; /* silently discard per RFC 6520 sec. 4 */

+ pl = p;

https://blog.cryptographyengineering.com/2014/04/08/attack-of-the-week-openssl-heartbleed/

24

https://blog.cryptographyengineering.com/2014/04/08/attack-of-the-week-openssl-heartbleed/

Fact 3: Software is Incredibly Complex

e Complexity
» Software becomes more and more complicated.
> Size Is measured in terms of millions lines of code.

 Connectivity
> The Internet makes it possible for attackers to exploit software remotely.

* Extensibility
> Programs written by untrusted parties

25

Fact 3: Software is Incredibly Complex

e Complexity
» Software becomes more and more complicated.
> Size Is measured in terms of millions lines of code.

20

Fact 3: Software is Incredibly Complex

47 million lines!

50 lines/page,
0.1 mm/page = 94 m!

I

Margaret Hamilton with code

for Apollo Guidance Computer
(NASA, ‘69)

https://openhub.net/p/chrome/analyses/latest/languages_summary 27

https://openhub.net/p/chrome/analyses/latest/languages_summary

Fact 3: Software is Incredibly Complex

 Connectivity
> The Internet makes it possible for attackers to exploit software remotely.

28

Connectivity

* |t's easy to secure your smartphone if it’s off the internet.

> Attackers cannot get to your phone remotely.
> You cannot browse malicious webpages or download malware.

* Reality: almost every device Is on the internet.

> Connectivity enables many things

> But attackers also like it: it allows the possibility of remotely hacking
any device on the internet.

29

30

Fact 3: Software is Incredibly Complex

* Extensibility
> Programs written by untrusted parties

31

Extensibility

e Software systems are not closed.

 Smartphone app market: allow users to extend the functionality
of their phones

* However
> We don’t know who wrote those apps?
> What if an app steal our credit card info or track our locations??

* Like connectivity, hackers also like extensible systems.

> Giving them an opportunity to inject malicious code

32

X7 Utils backdoor

XA 11 languages Vv

Article Talk

From Wikipedia, the free encyclopedia

In February 2024, a malicious backdoor was introduced to the Linux build of the xz
utility within the liblzma library in versions 5.6.0 and 5.6.1 by an account using the name
"Jia Tan" [Pll4] kciooigives-ar-atiooke a specific Ed448 private

been given the Common xposures number CVE-2024-3094 7' and

has been assigned a CVSS score of 10.0, the highest possible score.]

While xz is commonly present in most Linux distributions, at the time of discovery the
backdoored version had not yet been widely deployed to production systems, but was
present in development versions of major distributions.! The backdoor was discovered
by the software developer Andres Freund, who announced his findings on 29 March
2024.["]

Background e

Read Edit View history Tools Vv

XZ Utils backdoor

Previous XZ logo contributed by Jia Tan
CVE identifier(s) CVE-2024-3094 (%'

Date discovered at or before 27 March
2024; 8 months ago!'![?]

Date of public 29 March 2024; 8 months
disclosure ago

33

It Is Too Easy to Write Bugs

1 #include <stdio.h>

int main(int argc, char sxargv[]) {
char user name[32];
scanf("%s", user name):
printf("Hello, %s!\n'", user_name);

NOYOT B W

}

1@5 What if user’'s name is longer than 32 characters?

(@)- What if the user deliberately/maliciously input
something than 32 characters?

34

Fact 3: Software is Incredibly Complex

e Complexity
» Software becomes more and more complicated.
> Size Is measured in terms of millions lines of code.

 Connectivity
> The Internet makes it possible for attackers to exploit software remotely.

* Extensibility
> Programs written by untrusted parties

35

Outline of Today

e Course logistics

360

Prerequisites

Courses:
 Computer Organizations/Architecture/Systems

e Systems Programming

What it really means:
 Comfortable with C and assembly language
> Almost no code writing, but some deep code reading/understanding.

* Enjoy working on low-level software

This Is a very advanced course focusing on
low-level systems stuff.

37

What Are You Supposed to Learn in this Course?

* Understand several fundamental software security threats
> Causes and Exploitations
 Understand common countermeasures against the threats
* Develop a secure programming mindset
> Build security In

33

Topics

 Memory Safety
> Root causes of and exploitations against bugs

> Deployed and experimental defenses
- Testing
- Mitigations
- Prevention

> Secure languages

e Type Safety
* Least Privilege Principle

39

Memory Safety Vulnerabilities Are a Major Threat

Home / Innovation / Security

Microsoft: 70 percent of all Security bugs Around 70% of our high severity security bugs are memory unsafety problems

are memory safety ISSUes (that is, mistakes with C/C++ pointers). Half of those are use-after-free bugs.
Percentage of memory safety issues has been hovering at . _ _
70 percent for the past 12 years. High+, impacting stable
§ecurity-related assert -
ﬁ Written by Catalin Cimpanu, Contributor on Feb, 11, 2019
) -
Use-after-f
O in | f v th(er se-a gn}reg

/ related

% of memory safety vs. non-memory safety CVEs by patch year

Without Dennis Ritchie,
there would be no Jobs

How do the top VPNs
compare? Plus, should
you try a free VPN?

Other memory unsafety
32.9%

Image: Matt Miller

Using a VPN to torrentis a

40

Reading Materials

» Software Security: Principles, Policies, and Protection, by Mathias Payer

> Broadly and briefly introduces software security, esp. on low-level software

dison-Wesley Software Security Serie v‘v

Third Edition

SOFTWARE
SECURITY COMPUTER SECURITY

HACKING

THE ART OF EXPLOITATION

JON ERICKSON

&

Wenliang Du

GARY McGRAL

Foreword by Dan Geer

Low-level hacking techniques Software security from Hands-on guidance on

software engineering’s practicing software security
perspective 4

Lecture Organization

* A quick review of the previous lecture
* A ~10-min in-class break (2.5 hr is a lot!)
* One or two topics

42

Assignments

e Solve three machine problems (45 %)

> FInd and exploit vulnerabilities in buggy programs.
 Read and understand research papers (40%)

» Summarize and answer questions about papers
e Students-led paper presentation and discussion (10%)
e Class participation (5% + 3% extra credit)

> Ask and answer questions!
* No Exams

43

Why Read and Discuss Research Papers?

* The software security area is evolving fast.
> New defenses and offenses come up everyday.
e “Security is as strong as the weakest link.”
> Learn how a seemingly minor bug can be deadly.

 Mutual review/critiques is important.

44

Assignments

e Solve three machine problems (40%)

> FInd and exploit vulnerabilities in buggy programs.
 Read and understand research papers (45%)

» Summarize and answer questions about papers
e Students-led paper presentation and discussion (10%)
e Class participation (5% + 3% extra credit)

> Ask and answer questions!
* No Exams

45

Assignments

e Solve three machine problems (40%)

> FInd and exploit vulnerabilities in buggy programs.
 Read and understand research papers (45%)

» Summarize and answer questions about papers
e Students-led paper presentation and discussion (10%)
e Class participation (5% + 3% extra credit)

> Ask and answer questions!
* No Exams

Lateness Policy
 Request for extension must be submitted before deadline.
* No late submissions will be accepted.

46

Use of Generative Al

o
g . G0« Permitted for learning purposes (BE CAREFUL!)

g } * Prohibited from generating contents for assignments

47

Action ltems

* Fill out the Google Form if you have not (see the announcement
in Blackboard)

* Read the assigned readings for this and next lectures

48

Tips on Better Learning

* Read the assigned readings before each lecture
e Get your hands dirty

* Review regularly what you have learned

* Ask questions!

49

Course Website

https://jiezhoucs.github.io/courses/csci-6545/fall-2025/

e Office hours, syllabus, schedule, etc.

* Assigned readings for lectures on the Schedule

* Firefox on Windows may not render the website correctly!
Use Chrome (or others) if you encounter display issues.

50

https://jiezhoucs.github.io/courses/csci-6545/fall-2025/

Any Questions?

51

Take a break!

52

Outline of Today

* Principles of Building Secure Software Systems

53

Learning Goals

* Understand security goals

 Know the security triad (CIA) and its limitations

 Reason based on TCB and threat models

* Core concepts: isolation, least privileges, fault compartmentalization
 How abstractions enable reduction of complexity

54

Bugs vs. Vulnerabilities

y, Wikipedia: “A software bug is a bug in computer software.”

. r Wikipedia: “In engineering, a bug is a design defect in an

N engineered system that causes an undesired result.”

Wikipedia: “Vulnerabillities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabilities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability (computer security)

55

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Definition: Software Security

« Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening

* Good things include functionality (e.g. legal information access).
* Tradeoff between functionality and security is the key.

eg. | E-Voting
|y Good things: convenience of voting; fast tallying; voting for the disabled,; ...

The convenience comes with risks
* Buggy voting software/hardware

* Changed e-voting software by insiders

° 56

The Sad Reality

* People are obsessed with providing more functionalities.

> Security is secondary.
> Security is an after-thought.

- “We’ll write the software with the required functionalities, then our security
team will make It secure.”

e Security perspective: integrate security design into the system design process
» “Build Security In”

 Managing the trade-off between functionality and security from the beginning

57

Definition: Software Security

« Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening

* Good things include functionality or legal information access.
* Tradeoff between functionality and security is the key.

@ e \What is the intended behavior?
e How should we define boundaries?

58

Definition: Software Security

« Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening

* Good things include functionality or legal information access.
* Tradeoff between functionality and security is the key.

59

CIA Security Triad (+1)

» Confidentiality: An attacker cannot recover protected data.
* Integrity: An attacker cannot modify protected data.
* Availability: An attacker cannot stop/hinder computation.

Accountability/non-repudiation: Committed changes

cannot be undone (as potential fourth fundamental property).

60

Trust

Fact 3: Software is Incredibly Complex

 Connectivity
> The Internet makes it possible for attackers to exploit software remotely.

* Extensibility
> Programs written by untrusted parties

3@5 Do you trust computations provided by others?

62

Thompson: Reflections on Trusting Trust

Ken Thompson
Co-creator of the UNIX system
Turing Award Winner

63

Thompson: Reflections on Trusting Trust

« Ken Thompson’s Turing Award lecture describes the importance of
making clear what should be trusted.

—] &)

* Do you trust your compiler?

> Thompson described an approach whereby he can generate a
compiler that can insert a backdoor.

- e.g., Insert a backdoor when recognizing a login program

* But you can examine the compiler’s source code.

> But, what program compiles the compiler?
> He puts the malicious code in that program.

64

Turtles All the Way Down

Takeaway: Thompson states the “obvious” moral that “You
cannot trust code that you did not totally create yourself”.

* Creating a basis for trusting is very hard, even today.

But, do you trust your hardware?

65

Trusted Computing Base (TCB)

+ A set of trusted hardware, firmware, and software that are critical
to the security of a computing system.

* E.g., a conventional e-voting machine: voting software + hardware
* Bugs in the TCB may jeopardize the system'’s security.

 Components outside of the TCB can misbehave without affecting
the security of TCB.

60

3@5 Small or Big TCB?

Trusted Computing Base (TCB)

+ A set of hardware, firmware, and software that are critical to the
security of a computer system.

* Bugs in the TCB may jeopardize the system’s security
* E.g., a conventional e-voting machine: voting software + hardware

 Components outside of the TCB can misbehave without affecting
the security of TCB.

* In general, a system with a smaller TCB is more trustworthy.

* A lot of security research is about how to move components outside
of the TCB (i.e., making the TCB smaller)

> E.g., Proof-Carrying Code removes the compiler outside of the TCB.

63

Definition: Threat Model

» Ihe abilities and resources of the attacker.
» Threat models enable structured reasoning about the attack surface.

 Awareness of entry points (and associated threats) to break into the target.

* Look at systems from an attacker’s perspective:

> Decompose application: identify structure
> Determine and rank threats
> Determine countermeasures and mitigations

Further reading:
https://owasp.org/www-community/Threat Modeling

69

https://owasp.org/www-community/Threat_Modeling

Security Analysis

@ How do you decide if a system is secure?

 What are the assets? (What could an attacker gain?)
* What are the goals? (What drives the attacker?)
* \What is the attack surface?

70

Threat Model: Example of a Safe/Lockbox

You protect your valuables by locking them in a safe. r.i‘n]
What is the attack surface? [V

* In trust land, you don’t need to lock your safe.

* An attacker may pick your lock.

* An attacker may use a torch to open your safe.

 An attacker may use advanced technology (x-ray) to open it.
* An attacker may get access (or copy) your key.

* An attacker may steal the whole safe.

* An attacker may replace the safe with a copy.

/1

Cost of Security

There is no free lunch. Security incurs overhead.

Security is
» expensive to develop
e expensive to maintain

e may have (high) performance overhead
 may be inconvenient to users

(2

Principles for Building Secure Software Systems

e |solation

* Least Privilege

e Fault Compartmentalization
* Trust and Correctness

73

Principle: Isolation

. Isolate two components from each other

« One component cannot access data/code of the other component
except through a well-defined API.

User-space application may only access the disk through the filesystem
API (i.e., the OS prohibits direct block access to raw data). The OS
iIsolates the user-space process from the disk.

eg.
]
& Isolation incurs overhead due to switching cost between components.

4

Principle of Least Privilege

» A component has the least privileges needed to function

* Any further removed privilege reduces functionality

* Any added privilege will not increase functionality (according to
the specifications)

* This property constraints an attacker in the obtainable privileges.

e.9. | Rendering in Chromium executes in an encapsulated sandbox where only
— |l minimal system calls are allowed.

79

Principle: Fault Compartmentalization

+ Separate individual components into smallest functional entity possible.

* These units contain faults to individual components.
e Allows abstraction and permission checks at boundaries.

eg. | A chatting app’s image processing module and audio processing module
— ||! are compartmentalized so that bugs in one module will not affect another.

This property builds on least privilege and isolation. Both properties are
most effective in combination: many small components that are running
and interacting with least privileges.

/0

Principle: Trust and Correctness

+ Specific components are assumed to be trusted or correct
according to a specification.

Formal verification ensures that a component correctly implements a
©) given specification and can therefore be trusted. However,

000

* It Is generally not computationally possible to formally verity arbitrarily
complex software.

* Also, the specification may be buggy.

7

Software and Hardware Abstractions

+ Abstraction is the act of representing essential features without
iIncluding the background details or explanations.

* Allow encapsulation of ideas without having to go into implementation details.
* Require an explicit definition on how to interoperate between layers

* In software, an API| abstracts the underlying implementation by defining
how a library can be used.

* In operating systems, the system call interface abstracts low level implementations.

* In hardware, an ISA abstracts the underlying implementation of the instructions
Into logic and state.

/83

Abstractions: Operating Systems (OS)

* Provides process abstraction

* \Well-defined API to access hardware resources
 Enforces mutual exclusion to resources
 Enforces access permissions for resources

* Restrictions based on user/group/ACL

* Restricts attacker

79

Abstractions: OS Process Isolation

* Address space: working memory of one process

 Memory protection: protect the memory (code and data such
as heap, stack, or globals) of one process from other processes

* Today’s systems implement address spaces (virtual memory) through
page tables with the help of an Memory Management Unit (MMU).

30

Abstractions: Single-domain OS

* A single layer, no isolation or compartmentalization

* All code runs in the same domain: the application can directly
call into drivers.

* High performance, often used in embedded systems

31

Abstractions: Monolithic OS

* Two layers: the operating system and applications
* The OS manages resources and orchestrates access
* Applications are unprivileged, must request access from the OS

 Linux fully and Windows mostly follow this approach for performance
(isolating individual components is expensive)

Application1 Application2 ... ApplicationX

82

Abstractions: Micro-kernel

* Many layers: each component is a separate process

* Only essential parts are privileged

> Process abstraction (address spaces)
> Process management (scheduling)
> Process communication (IPC)

* Applications request access from different OS processes

Application1 Application2 ... ApplicationX
. . Network .
Disk Driver oo File System

Scheduling/IPC/Virtual Memory/etc.

Hardware

83

Abstractions: Library OS

* Few thin layers; flat structure
* Micro-kernel exposes bare OS services
* Each application brings all necessary OS components

Applicationi Application2
Library OS 1 Library OS 2

34

Hardware Abstraction

* Virtual memory through MMU/OS

* Only OS has access to raw physical memory

* DMA for trusted devices

* |[SA enforces privilege abstraction (ring 0/3 on x86)

Hardware abstractions are fundamental for performance.

85

Case Study: Mail Server

 Mail Transfer Agents (MTA) need to do a plethora of tasks:

» Send/receive data from the network
> Manage a pool of received/unsent messages
> Provide access to stored messages for each user

Sendma1ll uses a typical Unix approach with a large monolithic server and is
known for the high complexity and previous security vulnerabillities.

,(}?2\ How would you compartmentalize a mail server?

86

Case Study: Mail Server

gmail: An mail MTA designed with security in mind.

o Key enabler: modularity

Compartmentalization
|solation

gmail-smtpd x / gmail-inject
| east Privilege

gmail-queue

l
o gmail-send \

gmail-rspawn gmail-Ispawn

| l

gmail-remote gmail-local

87

Case Study: Mail Server

N\, ”

-(?): What can we do to further reduce potential exploits?
e Separate modules run under separate user IDs.

gmail-smtpd qmall |nject

(gmaild) \ / (“user”)

gmail-queue

(suid gmailq)
gmail-send
gmail-rspawn gmail-Ispawn
(@mailr) (root)
gmail-remote gmail-local

(gmailr) (suid “user”)

