
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to Gang Tan of PSU and Mathias Payer of EPFL.

2

Why does software security matter?

3

4

5

6

7

8

How about Android?

9

10

Software security threats are ubiquitous!

Outline of Today

11

• Why should we study/research software security?
• Course logistics
• Principles of Building Secure Software Systems

Outline of Today’s Lecture

12

• Why should we study/research software security?
• Course logistics
• Principles of Building Secure Software Systems

Fact 1: Software Has Bugs

13

Definition: Software Bug

14

Wikipedia: “A software bug is a bug in computer software.”
Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

https://en.wikipedia.org/wiki/Bug_(engineering)

https://en.wikipedia.org/wiki/Software_bug

https://en.wikipedia.org/wiki/Bug_(engineering)
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Software_bug

Definition: Software Bug

15

Wikipedia: “A software bug is a bug in computer software.”
Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

https://en.wikipedia.org/wiki/Bug_(engineering)

https://en.wikipedia.org/wiki/Software_bug

https://en.wikipedia.org/wiki/Bug_(engineering)
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Software_bug

It is Too Easy to Write Bugs

16

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 char user_name[32];
 5 scanf("%s", user_name);
 6 printf("Hello, %s!\n", user_name);
 7 }

What if user’s name is longer than 32 characters?

What if the user deliberately/maliciously input
something longer than 32 characters?

17

Fact 2: Many Bugs Are Exploitable (Causing Damage)

Ransomeware
e.g. WannaCry

Botnet
e.g. Mirai

Spyware
e.g. Pegasus

Bugs vs. Vulnerabilities

18

Wikipedia: “A software bug is a bug in computer software.”
Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

Bugs vs. Vulnerabilities

19

Wikipedia: “A software bug is a bug in computer software.”
Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Wikipedia: “Vulnerabilities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabilities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

The Morris Worm

20

The Morris Worm

21

Brought down most of the Internet on November 2nd, 1988.
• Buffer overflow in fingerd, injected shellcode and commands

• Debug mode in sendmail to execute arbitrary commands

• Dictionary attack with frequently used usernames/passwords

Buggy worm: A type of malicious program (malware) that self-replicates
and spreads across networks to affect as many machines as possible.

OpenSSL Heartbleed Vulnerability

22

OpenSSL Heartbleed Vulnerability

23

• A programming bug in the OpenSSL implementation’s HeartBeat mechanism
‣ Used in numerous web servers

• The bug: lack of input validation
‣ An attacker can send in a HeartBeat request, which contains a message

and a length.
- The length should correspond to the message’s size.

• Attacker can
‣ Send in a request with a large length, greater than the message’s size

‣ Hence the attacker can get a slice of data from server’s main memory -- one  

that is up to 64KB in length.
‣ That memory could contain the private key of the server (or users’ passwords).

Fix for Heartbleed

24
https://blog.cryptographyengineering.com/2014/04/08/attack-of-the-week-openssl-heartbleed/

https://blog.cryptographyengineering.com/2014/04/08/attack-of-the-week-openssl-heartbleed/

25

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

26

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

27

Fact 3: Software is Incredibly Complex

Margaret Hamilton with code

for Apollo Guidance Computer

(NASA, ‘69)

47 million lines!
50 lines/page,

0.1 mm/page = 94 m!

20.6m

https://openhub.net/p/chrome/analyses/latest/languages_summary

https://openhub.net/p/chrome/analyses/latest/languages_summary

28

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

29

Connectivity

• It’s easy to secure your smartphone if it’s off the internet.
‣ Attackers cannot get to your phone remotely.

‣ You cannot browse malicious webpages or download malware.

• Reality: almost every device is on the internet.
‣ Connectivity enables many things

‣ But attackers also like it: it allows the possibility of remotely hacking  

any device on the internet.

30

31

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

Extensibility

32

• Software systems are not closed.

‣ We don’t know who wrote those apps?

‣ What if an app steal our credit card info or track our locations?

• Smartphone app market: allow users to extend the functionality  
of their phones

• However

• Like connectivity, hackers also like extensible systems.
‣ Giving them an opportunity to inject malicious code

33

It is Too Easy to Write Bugs

34

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 char user_name[32];
 5 scanf("%s", user_name);
 6 printf("Hello, %s!\n", user_name);
 7 }

What if user’s name is longer than 32 characters?

What if the user deliberately/maliciously input
something than 32 characters?

35

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

Outline of Today

36

• Why should we study/research software security?
• Course logistics
• Principles of Building Secure Software Systems

Prerequisites

37

• Computer Organizations/Architecture/Systems

• Systems Programming

Courses:

• Comfortable with C and assembly language

‣ Almost no code writing, but some deep code reading/understanding.

• Enjoy working on low-level software

What it really means:

This is a very advanced course focusing on
low-level systems stuff.

What Are You Supposed to Learn in this Course?

38

• Understand several fundamental software security threats

‣ Causes and Exploitations

• Understand common countermeasures against the threats

• Develop a secure programming mindset

‣ Build security in

Topics

39

• Memory Safety

‣ Root causes of and exploitations against bugs

‣ Deployed and experimental defenses

- Testing

- Mitigations

- Prevention

‣ Secure languages

• Type Safety

• Least Privilege Principle

Memory Safety Vulnerabilities Are a Major Threat

40

Reading Materials

41

• Software Security: Principles, Policies, and Protection, by Mathias Payer
‣ Broadly and briefly introduces software security, esp. on low-level software

Low-level hacking techniques Software security from
software engineering’s
perspective

Hands-on guidance on
practicing software security

Lecture Organization

42

• A quick review of the previous lecture

• A ~10-min in-class break (2.5 hr is a lot!)

• One or two topics

Assignments

43

• Solve three machine problems (45%)

‣ Find and exploit vulnerabilities in buggy programs.

• Read and understand research papers (40%)

‣ Summarize and answer questions about papers

• Students-led paper presentation and discussion (10%)

• Class participation (5% + 3% extra credit)

‣ Ask and answer questions!

• No Exams

Why Read and Discuss Research Papers?

44

• “Security is as strong as the weakest link.”

‣ Learn how a seemingly minor bug can be deadly.

• The software security area is evolving fast.

‣ New defenses and offenses come up everyday.

• Mutual review/critiques is important.

Assignments

45

• Solve three machine problems (40%)

‣ Find and exploit vulnerabilities in buggy programs.

• Read and understand research papers (45%)

‣ Summarize and answer questions about papers

• Students-led paper presentation and discussion (10%)

• Class participation (5% + 3% extra credit)

‣ Ask and answer questions!

• No Exams

Assignments

46

• Solve three machine problems (40%)

‣ Find and exploit vulnerabilities in buggy programs.

• Read and understand research papers (45%)

‣ Summarize and answer questions about papers

• Students-led paper presentation and discussion (10%)

• Class participation (5% + 3% extra credit)

‣ Ask and answer questions!

• No Exams
Lateness Policy
• Request for extension must be submitted before deadline.

• No late submissions will be accepted.

Use of Generative AI

47

• Permitted for learning purposes (BE CAREFUL!)

• Prohibited from generating contents for assignments

Action Items

48

• Fill out the Google Form if you have not (see the announcement
in Blackboard)

• Read the assigned readings for this and next lectures

Tips on Better Learning

49

• Read the assigned readings before each lecture

• Get your hands dirty

• Review regularly what you have learned

• Ask questions!

Course Website

50

https://jiezhoucs.github.io/courses/csci-6545/fall-2025/

• Office hours, syllabus, schedule, etc.

• Assigned readings for lectures on the Schedule
• Firefox on Windows may not render the website correctly!

Use Chrome (or others) if you encounter display issues.

https://jiezhoucs.github.io/courses/csci-6545/fall-2025/

51

Any Questions?

52

Take a break!

Outline of Today

53

• Why should we study/research software security?
• Course logistics
• Principles of Building Secure Software Systems

Learning Goals

54

• Understand security goals

• Know the security triad (CIA) and its limitations

• Reason based on TCB and threat models

• Core concepts: isolation, least privileges, fault compartmentalization

• How abstractions enable reduction of complexity

Bugs vs. Vulnerabilities

55

Wikipedia: “A software bug is a bug in computer software.”
Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Wikipedia: “Vulnerabilities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabilities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Definition: Software Security

56

Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening
•Good things include functionality (e.g. legal information access).

• Tradeoff between functionality and security is the key.

• Buggy voting software/hardware

• Changed e-voting software by insiders

• …

E-Voting
Good things: convenience of voting; fast tallying; voting for the disabled; …
The convenience comes with risks

The Sad Reality

57

• Security perspective: integrate security design into the system design process

‣ “Build Security In”

• People are obsessed with providing more functionalities.
‣ Security is secondary.

‣ Security is an after-thought.

- “We’ll write the software with the required functionalities, then our security
team will make it secure.”

• Managing the trade-off between functionality and security from the beginning

Definition: Software Security

58

Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening
•Good things include functionality or legal information access.

• Tradeoff between functionality and security is the key.

• What is the intended behavior?

• How should we define boundaries?

Definition: Software Security

59

Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening
•Good things include functionality or legal information access.

• Tradeoff between functionality and security is the key.

CIA Security Triad (+1)

60

• Confidentiality: An attacker cannot recover protected data.

• Integrity: An attacker cannot modify protected data.

• Availability: An attacker cannot stop/hinder computation.

Accountability/non-repudiation: Committed changes
cannot be undone (as potential fourth fundamental property).

Trust

62

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

Do you trust computations provided by others?

Thompson: Reflections on Trusting Trust

63

Ken Thompson

Co-creator of the UNIX system

Turing Award Winner

Thompson: Reflections on Trusting Trust

64

• Ken Thompson’s Turing Award lecture describes the importance of
making clear what should be trusted.

‣ Thompson described an approach whereby he can generate a
compiler that can insert a backdoor.
- e.g., insert a backdoor when recognizing a login program

• But you can examine the compiler’s source code.
‣ But, what program compiles the compiler?

‣ He puts the malicious code in that program.

• Do you trust your compiler?

Turtles All the Way Down

65

Takeaway: Thompson states the “obvious” moral that “You
cannot trust code that you did not totally create yourself”.
• Creating a basis for trusting is very hard, even today.

But, do you trust your hardware?

Trusted Computing Base (TCB)

66

A set of trusted hardware, firmware, and software that are critical
to the security of a computing system.
• E.g., a conventional e-voting machine: voting software + hardware

• Bugs in the TCB may jeopardize the system’s security.

• Components outside of the TCB can misbehave without affecting
the security of TCB.

Small or Big TCB?

Trusted Computing Base (TCB)

68

A set of hardware, firmware, and software that are critical to the
security of a computer system.
• Bugs in the TCB may jeopardize the system’s security

• E.g., a conventional e-voting machine: voting software + hardware

• In general, a system with a smaller TCB is more trustworthy.

‣ E.g., Proof-Carrying Code removes the compiler outside of the TCB.

• A lot of security research is about how to move components outside
of the TCB (i.e., making the TCB smaller)

• Components outside of the TCB can misbehave without affecting
the security of TCB.

Definition: Threat Model

69

The abilities and resources of the attacker.

• Threat models enable structured reasoning about the attack surface.

• Awareness of entry points (and associated threats) to break into the target.

• Look at systems from an attacker’s perspective:
‣ Decompose application: identify structure

‣ Determine and rank threats

‣ Determine countermeasures and mitigations

https://owasp.org/www-community/Threat_Modeling
Further reading:

https://owasp.org/www-community/Threat_Modeling

Security Analysis

70

• What are the assets? (What could an attacker gain?)

• What are the goals? (What drives the attacker?)

• What is the attack surface?

How do you decide if a system is secure?

Threat Model: Example of a Safe/Lockbox

71

You protect your valuables by locking them in a safe.
What is the attack surface?

• An attacker may pick your lock.

• An attacker may use a torch to open your safe.

• An attacker may use advanced technology (x-ray) to open it.

• An attacker may get access (or copy) your key.

• An attacker may steal the whole safe.

• An attacker may replace the safe with a copy.

• ……

• In trust land, you don’t need to lock your safe.

Cost of Security

72

There is no free lunch. Security incurs overhead.

Security is
• expensive to develop

• expensive to maintain

• may have (high) performance overhead

• may be inconvenient to users

Principles for Building Secure Software Systems

73

• Isolation

• Least Privilege

• Fault Compartmentalization

• Trust and Correctness

Principle: Isolation

74

Isolate two components from each other

• One component cannot access data/code of the other component

except through a well-defined API.

Isolation incurs overhead due to switching cost between components.

User-space application may only access the disk through the filesystem
API (i.e., the OS prohibits direct block access to raw data). The OS
isolates the user-space process from the disk.

Principle of Least Privilege

75

A component has the least privileges needed to function
• Any further removed privilege reduces functionality

• Any added privilege will not increase functionality (according to   the specifications)

• This property constraints an attacker in the obtainable privileges.

Rendering in Chromium executes in an encapsulated sandbox where only
minimal system calls are allowed.

Principle: Fault Compartmentalization

76

Separate individual components into smallest functional entity possible.
• These units contain faults to individual components.

• Allows abstraction and permission checks at boundaries.

This property builds on least privilege and isolation. Both properties are
most effective in combination: many small components that are running
and interacting with least privileges.

A chatting app’s image processing module and audio processing module
are compartmentalized so that bugs in one module will not affect another.

Principle: Trust and Correctness

77

Specific components are assumed to be trusted or correct
according to a specification.

Formal verification ensures that a component correctly implements a
given specification and can therefore be trusted. However,
• It is generally not computationally possible to formally verify arbitrarily

complex software.
• Also, the specification may be buggy.

Software and Hardware Abstractions

78

Abstraction is the act of representing essential features without
including the background details or explanations.
• Allow encapsulation of ideas without having to go into implementation details.

• Require an explicit definition on how to interoperate between layers

• In software, an API abstracts the underlying implementation by defining 
how a library can be used.

• In hardware, an ISA abstracts the underlying implementation of the instructions
into logic and state.

• In operating systems, the system call interface abstracts low level implementations.

Abstractions: Operating Systems (OS)

79

• Provides process abstraction

• Well-defined API to access hardware resources

• Enforces mutual exclusion to resources

• Enforces access permissions for resources

• Restrictions based on user/group/ACL

• Restricts attacker

Abstractions: OS Process Isolation

80

• Memory protection: protect the memory (code and data such
as heap, stack, or globals) of one process from other processes

• Address space: working memory of one process

• Today’s systems implement address spaces (virtual memory) through
page tables with the help of an Memory Management Unit (MMU).

Abstractions: Single-domain OS

81

• All code runs in the same domain: the application can directly
call into drivers.

• A single layer, no isolation or compartmentalization

• High performance, often used in embedded systems

Application1 Application2 … ApplicationX

Memory
Management File System

Driver Driver
Driver

Process Scheduler

Networking

Driver

Hardware

Abstractions: Monolithic OS

82

Application1 Application2 … ApplicationX

Memory
Management File System

Driver Driver
Driver

Process Scheduler

Networking

Driver

Hardware

• The OS manages resources and orchestrates access
• Two layers: the operating system and applications

• Applications are unprivileged, must request access from the OS
• Linux fully and Windows mostly follow this approach for performance

(isolating individual components is expensive)

Abstractions: Micro-kernel

83

• Many layers: each component is a separate process
• Only essential parts are privileged
‣ Process abstraction (address spaces)

‣ Process management (scheduling)

‣ Process communication (IPC)

• Applications request access from different OS processes

Application1 Application2 … ApplicationX

Disk Driver File System

Hardware

Network
Driver …

Scheduling/IPC/Virtual Memory/etc.

Abstractions: Library OS

84

• Few thin layers; flat structure

• Micro-kernel exposes bare OS services

• Each application brings all necessary OS components

Hardware

Scheduling/IPC/Virtual Memory/etc.

Application1
Library OS 1

Application2
Library OS 2

Hardware Abstraction

85

• Virtual memory through MMU/OS

• Only OS has access to raw physical memory

• DMA for trusted devices

• ISA enforces privilege abstraction (ring 0/3 on x86)

Hardware abstractions are fundamental for performance.

Case Study: Mail Server

86

• Mail Transfer Agents (MTA) need to do a plethora of tasks:
‣ Send/receive data from the network

‣ Manage a pool of received/unsent messages

‣ Provide access to stored messages for each user

Sendmail uses a typical Unix approach with a large monolithic server and is
known for the high complexity and previous security vulnerabilities.

How would you compartmentalize a mail server?

Case Study: Mail Server

87

qmail: An mail MTA designed with security in mind.
• Key enabler: modularity

qmail-smtpd qmail-inject

qmail-queue

qmail-send

qmail-rspawn

qmail-remote

qmail-lspawn

qmail-local

Least Privilege

Isolation
Compartmentalization

Case Study: Mail Server

88

What can we do to further reduce potential exploits?

qmail-smtpd
(qmaild)

qmail-inject
(“user”)

qmail-queue
(suid qmailq)

qmail-send
(qmails)

qmail-rspawn
(qmailr)

qmail-remote
(qmailr)

qmail-lspawn
(root)

qmail-local
(suid “user”)

• Separate modules run under separate user IDs.

