
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to Gang Tan of PSU.

Outline of Today’s Lecture

3

• A C Program’s Life Journey

• Memory

• Buffer overflows: common pitfalls and exploitation

Programming in C is Simple

5

Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Programming in C is Simple

6

~200 pages ~1,000 pages

Programming in C is Simple

7

~200 pages ~1,000 pages

8

If so, why do we have so many bugs in
C programs?

Programming Correctly in C is (Extremely) Hard

9

Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Pointer: Capability to manipulate memory.
• For C, pointer is usually implemented as a virtual address.
• But this is not the only way to implement pointers.

Architecture of Modern Computers

10

von Neumann Architecture Harvard Architecture

Architecture of Modern Computers

11

Input Output

Computing

Memory

Programming Correctly in C is (Extremely) Hard

12

Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Pointer: Capability to manipulate memory.
• For C, pointer is usually implemented as a virtual address.

C pointers can do almost arbitrary memory manipulation!
• The correctness is at the discretion of programmers.

• But this is not the only way to implement pointers.

Hello World Program

13

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 printf("Hello, world!\n”);
 5
 6 return 0;
 7 }

• Size of this .c file: 98 bytes

• Source line of code: 7

hello.c

$ gcc hello.c -o hello

$./hello
• Size of the hello binary: 17 KB

• Instructions executed: 657,679

Life of a C Program: Compilation

14

Life of a C Program: Compilation

15

Front-end Mid-end Backend

• Lexical analysis

• Parsing

• Semantic analysis

IR Optimized IR

• Intermediate Representation (IR)
code generation

• IR Optimizations • Native CodeGen

• Linking

Life of a C Program: Execution

16

Loading

• Initializing memory layout

Execution Termination

• (Optional) Dynamic
linking, e.g.libc

• Environment initialization,
e.g., stack setup

• Setting program counter
(PC) to _start()

• _start() calls
main()

• main() runs the
program

‣ main() returns,
‣ _start() calls exit()
‣ cleanup and shutdown

CIA Security Triad

17

• Confidentiality: An attacker cannot recover protected data.

• Integrity: An attacker cannot modify protected data.

• Availability: An attacker cannot stop/hinder computation.

Architecture of Modern Computers

18

Input Output

Computing

Memory

Definition: Threat Model

19

The abilities and resources of the attacker

• Threat models enable structured reasoning about the attack surface.

• Awareness of entry points (and associated threats) to break into the target.

• Look at systems from an attacker’s perspective:
‣ Decompose application: identify structure
‣ Determine and rank threats

‣ Determine countermeasures and mitigations

https://owasp.org/www-community/Threat_Modeling

Further reading:

https://owasp.org/www-community/Threat_Modeling

Address Space of a C Program on x86-32

20

• Code

• Data

‣ Globals

‣ Stack for local variables

‣ Heap for dynamic memory

What do programs need in memory?

Stack

Heap

Text (Code)

0xffffffff

0x0

Global Data

Stack

Heap

Text (Code)

Address Space of a C Program on x86-32

21

• Code

• Data Segment

‣ Initialized global variables

• BSS Segment

‣ Uninitialized global data

• Heap

• Shared libraries

• Stack

• Kernel

What do programs need in memory?
0xffffffff

0x0

Global Data Data Segment

Kernel

Stack

Heap

Text (Code)

BSS Segment

Shared lib

Check “/proc/pid/maps” to see how
memory mapping looks in a real system.

Architecture of Modern Computers

22

Input Output

Computing

Memory
What exactly is memory?

23

Usable Memory From a C
Programmer’s Perspective:

Virtual Address Space (+ Registers)

AMD64/x86-64 ISA

24

• General-purpose registers
‣ rax–rdx, rsi, rdi, r8–r15

‣ rbp, rsp

• Program counter
‣ rip

• Segment registers

• Control registers
‣ cs, ss, ds, ss, es, fs, gs

‣ cr0, cr2, cr3, cr4

25

What can go wrong in memory?

It is Too Easy to Write Bugs

26

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 char user_name[32];
 5 scanf("%s", user_name);
 6 printf("Hello, %s!\n", user_name);
 7 }

What if user’s name is longer than 32 characters?

What if the user deliberately/maliciously input
something than 32 characters?

Buffer Overflows

27

Reading/writing a buffer out of its bounds.

• It is C/C++ programmers’ job to ensure such errors do not happen.
• In contract, most modern languages (e.g., Java, Rust, …) prevent

buffer overflows by performing automatic bounds checking.
• The first Internet worm, Morris Worm, and many subsequent ones

(CodeRed, Blaster, ...) exploited buffer overflows.
• Buffer overflows are still among the most commonly exploited vulnerabilities.

p_arr

int array[5]

1 2 3 4 55 … 42

Buffer Overflows

28

29

One Common Source of Pitfalls:
C String Manipulation

Using Strings in C

30

• C provides many string functions in its libraries (libc)

• For example, we use the strcpy function to copy one string to another:

#include <string.h>

char string1[] = "Hello, world!";
char string2[20];
strcpy(string2, string1);

Using Strings in C

31

• Another lets us compare strings:

char string3[] = "this is";
char string4[] = "a test";
if(strcmp(string3, string4) == 0) {
 printf("strings are equal\n");
} else {
 printf("strings are different\n”);
}

• This code fragment will print "strings are different". Notice that strcmp
does not return a boolean result.

Note: Use the “man page” to check how to use libc functions,
e.g., “man strcmp”

Other Common String Functions

32

• strlen: Get the length of a string

• strcat/strncat: String concatenation

• gets/fgets: Receive inputs to a string

• strdup: Duplicate a string

• strstr: Locate a substring

• …

Common String Manipulation Errors

33

• Buffer overflows

• Null-termination errors

• Off-by-one errors

• …

gets: Unbounded String Copies

34

char *gets(char *s);

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 char user_name[32];
 5 scanf("%s", user_name);
 6 printf("Hello, %s!\n", user_name);
 7 }

• Get a string from standard input to the destination buffer

• Does not restrict the size of the input

• Can overflow the destination fixed-size buffer

gets: Unbounded String Copies

35

char *gets(char *s);

• Get a string from standard input to the destination buffer

• Does not restrict the size of the input

• Can overflow the destination fixed-size buffer

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 char user_name[32];
 5 gets(user_name);
 6 printf("Hello, %s!\n", user_name);
 7 }

strcpy and strcat

36

char *strcpy(char *dest, const char *src);
char *strcat(char *dest, const char *src);

• Copy/Concatenate a string to another

int main(int argc, char *argv[]) {
 char name[2048];
 strcpy(name, argv[1]);
 strcat(name, " = ");
 strcat(name, argv[2]);
 ...

• Do not consider the size of the destination buffer

• Can overflow the destination fixed-size buffer

Better String Library Functions

37

• Functions that restrict the number of bytes are recommended.

• Never use gets(char *s)
‣ Use fgets(char *s, int size, FILE *stream) instead

From gets to fgets

38

char *fgets(char *s, int size, FILE *stream);

“fgets reads in at most one less than size characters from stream and stores
them into the buffer pointed to by s. Reading stops after an EOF or a
newline. If a newline is read, it is stored into the buffer. A terminating null
byte ('\0') is stored after the last character in the buffer.”

 1 #include <stdio.h>
 2
 3 int main(int argc, char *argv[]) {
 4 char user_name[32];
 5 fgets(user_name, 32, stdin);
 6 printf("Hello, %s!\n", user_name);
 7 }

33

Better String Library Functions

39

• Functions that restrict the number of bytes are recommended.

• Never use gets(char *s)
‣ Use fgets(char *s, int size, FILE *stream) instead

• gets() has been deprecated since 2007.

Better String Library Functions

40

• Instead of strcpy(), use strncpy()
• Instead of strcat(), use strncat()
• Instead of sprintf(), use snprintf()

But Still Need Care

41

char *strncpy(char *dest, const char *src, size_t n);

• Copy at most n char from src to dest. Stop at nth char or ‘\0’.

• What happens if the size of src is n or greater:
‣ Only the first n char will get copied

‣ dest may not be null-terminated!

42

C Strings Are Assumed/Expected
to Be Null-terminated.

Null-termination Errors

43

int main(int argc, char* argv[]) {
 char a[16], b[16];
 strncpy(a, "0123456789abcdef", sizeof(a));
 printf("%s",a);
 strcpy(b, a);
}

What will be printed out?

‣ Undefined behaviors, e.g., segmentation fault  
if printf is executed.

• a[] not properly terminated

Null-termination Errors

44

int main(int argc, char* argv[]) {
 char a[16], b[16];
 strncpy(a, "0123456789abcdef", sizeof(a));
 printf("%s",a);
 strcpy(b, a);
}

What will be printed out?

• a[] not properly terminated.

‣ Undefined behaviors, e.g., segmentation fault  
if printf is executed.

How to fix it?

strcpy to strncpy

45

• Do not replace strcpy(dest, src) by 
 strncpy(dest, src, sizeof(dest)) 
but by 
 strncpy(dest, src, sizeof(dest) -1);
 dest[sizeof(dest) - 1] = ‘\0’; 
if dest should be null-terminated.

• You never have this headache in memory-safe languages (e.g., Rust).
• Further, strncpy has big performance penalty vs. strcpy.
‣ It NIL-fills the remainder of the destination

But Still Need Care

46

char *strncpy(char *dest, const char *src, size_t n);

• Copy at most n char from src to dest. Stop at nth char or ‘\0’.

• What happens if the size of src is n or greater:
‣ Only the first n char will get copied

‣ dest may not be null-terminated!
• What happens if dest’s buffer is smaller than n?
‣ We may have a buffer overflow bug!

Signed vs. Unsigned Numbers

47

char buf[N];
int len;
...
if (len > N) {
 error("Invliad length");
 return;
}
read(fd, buf, len);

What if len is negative?

ssize_t read(int fd, void *buf, size_t count);

len will be cast to unsigned and negative length overflows,

e.g., -1 -> 2^32 - 1 = 4294967295

Checking for Negative Lengths

48

char buf[N];
int len;
...
if (len < 0 || len > N) {
 error("Invliad length");
 return;
}
read(fd, buf, len);

However, it still has a problem if the buf is going to be treated as a C string.

Any other problems?

A Good Version

49

char buf[N];
int len;
...
if (len < 0 || len > N) {
 error("Invliad length");
 return;
}
read(fd, buf, len);
buf[len] = ‘\0’; // null terminate buf

Is it really a good version?

A Good Version

50

char buf[N];
int len;
...
if (len < 0 || len > N - 1) {
 error("Invliad length");
 return;
}
read(fd, buf, len);
buf[len] = ‘\0’; // null terminate buf

51

Exploiting Buffer Overflows

How Can Buffer Overflow Bugs Lead to Vulnerabilities?

52

• All the examples look like simple programming bugs.

• How can they possibly enable attackers to do bad things?

Bugs vs. Vulnerabilities

53

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Wikipedia: “A software bug is a bug in computer software.”

Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

Wikipedia: “Vulnerabilities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabilities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

How Can Buffer Overflow Bugs Lead to Vulnerabilities?

54

• All the examples look like simple programming bugs.

• How can they possibly enable attackers to do bad things?
‣ Stack smashing to exploit buffer overflows

‣ Illustrate the technique using AMD64 (x86-64) architecture

Definition: Threat Model

55

The abilities and resources of the attacker

• Threat models enable structured reasoning about the attack surface.

• Awareness of entry points (and associated threats) to break into the target.

• Look at systems from an attacker’s perspective:
‣ Decompose application: identify structure
‣ Determine and rank threats

‣ Determine countermeasures and mitigations

https://owasp.org/www-community/Threat_Modeling

Further reading:

https://owasp.org/www-community/Threat_Modeling

How Can Buffer Overflow Bugs Lead to Vulnerabilities?

56

• All the examples look like simple programming bugs.

• How can they possibly enable attackers to do bad things?
‣ Stack smashing to exploit buffer overflows

‣ Illustrate the technique using ADM64 (x86-64) architecture

• We start with some background
‣ Program stack management

‣ AMD64/x86-64

Address Space of a C Program on x86-32

57

• Code

• Data

‣ Globals

‣ Stack for local variables

‣ Heap for dynamic memory

What do programs need in memory?

Stack

Heap

Text (Code)

0xffffffff

0x0

Global Data

Program Stack

58

• For implementing function calls and returns

59

Why do we need functions?

Architecture of Modern Computers

60

Input Output

Computing

Memory

Program Stack

61

• For implementing function calls and returns

• A stack frame is created for the called function (i.e., the callee)
‣ Whenever the caller function calls the callee

• The frame keeps track of program execution state by storing
‣ Local variables

‣ Some arguments to the callee

‣ Depending on the calling convention

‣ Return address of the calling function (caller)

‣ ……

Program Stack

62

Stack frame for
foo()

high address

low address

Stack

... foo(...) {
 ...
 bar(...);
 ...
}

... bar(...) {
 baz(...);
 ...
}

... baz(...) {
 ...
}

Stack frame for
bar()

Stack frame for
baz()

Stack Frames

63

• Stack grows from high memory address to low memory address.

• The stack pointer points to the top of the stack.
‣ RSP in Intel x86-64

• The frame pointer points to the end of the current frame.
‣ also called the base pointer

‣ RBP in Intel x86-64

• The stack is modified during
‣ function calls, by the caller

‣ function initialization, by the callee

‣ function execution, by the callee

‣ returning from a function, by the callee

Calling Convention

64

How functions/subroutines pass arguments and return values at the
macro-architecture level.

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

• Where to put all the arguments?

• Where to put the return value?

65

Usable Memory From a C
Programmer’s Perspective:

Virtual Address Space (+ Registers)

Background: AMD64/x86-64

66

• Pointers and long integer are 64-bit long.

• 16 general-purpose registers; each 64-bit long
‣ Integer arithmetic operations support 8, 16, 32, and 64 bits

AMD64/x86-64 ISA

67

• General-purpose registers
‣ rax–rdx, rsi, rdi, r8–r15

‣ rbp, rsp

• Program counter
‣ rip

• Segment registers

• Control registers
‣ cs, ss, ds, ss, es, fs, gs

‣ cr0, cr2, cr3, cr4

Background: AMD64/x86-64

68

• Pointers and long integer are 64-bit long

• 16 general-purpose registers; each 64-bit long

• Calling conventions pass arguments first in registers, then via stack.
‣ System V AMD 64 ABI: Pass the first 6 arguments in registers

- UNIX-like operating systems (e.g. Linux) use this calling convention.

- Microsoft has its own calling convention.

‣ As a result, some procedures do not need to access the stack at all.

‣ Integer arithmetic operations support 8, 16, 32, and 64 bits

System V AMD64 Calling Convention

69

How functions/subroutines pass arguments and return values at the
macro-architecture level.

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

• Where to put all the arguments?

• Where to put the return value?

• Arguments are passed
‣ in registers: rdi, rsi, rdx, rcx, r8, r9

‣ then via stack

• Return value is passed via
‣ in registers: rax, rdx

‣ then via stack

System V AMD64 Calling Convention

70

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

h

high address

low address

g

xx
yy
zz

…

rdi a
rsi b
rdx c
rcx d
r8 e
r9 f

rax zz + 20

rsp

What is missing in the frame?
‣ There is only one rbp & rsp.

‣ Where to return to the caller?

System V AMD64 Calling Convention

71

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

h

low address

g

xx
yy
zz rsp

What is missing in the frame?
‣ There is only one rbp & rsp.

‣ Where to return to the caller?

Return Address
saved rbp rbp

rbp + 16
rbp + 24

rsp + 8
rsp + 16

high address

72

How are function frames set up?

Function Frame Setup

73

1. Callsite

2. Function Initialization

3. Function Return

Example Illustrating Stack Buffer Overflows

74

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Compiled by clang-14 on Linux/AMD64

Function Calls

75

foo(1,2);

• Pass the 1st argument to edi (the lower half of rdi)

• Pass the 2nd argument to esi (the lower half of rsi)

• Push the return address onto the stack, and jump to the callee function

• Arguments are passed
‣ in registers: rdi, rsi, rdx, rcx, r8, r9,  

then via stack

Function Calls: Stack

76

Stack frame of
main()

low address

high address

rsp

rbp

Before the call

Stack frame of
main()

low address

Return Address

high address

rsp

rbp

After the call

Function Initialization

77

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Function Initialization

78

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

• Save the old frame pointer

• Set the new frame pointer

• Allocate space for local variables

Function Initialization: Stack

79

Before the call

Stack frame of
main()

low address

Return Address

high address

rsp

rbp

After the call

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

buffer

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Anything
unexpected?

Function Return

80

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Function Initialization

• Deallocate the space for local data

• Restore the old frame pointer

• Get the return address and jump to it

Function Return: Using the leave Instruction

81

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
} • leave: Shorthand for two instructions

‣mov %rbp, %rsp
‣pop %rbp

• Deallocate the space for local data

• Restore the old frame pointer

• Get the return address and jump to it

Function Initialization

Function Return: Stack

82

Before the call After the call

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

buffer

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Stack frame of
main()

low address

Return Address

high address

rbp

rsp
main’s rbp

buffer

83

What could attackers do?

Definition: Threat Model

84

The abilities and resources of the attacker

• Threat models enable structured reasoning about the attack surface.

• Awareness of entry points (and associated threats) to break into the target.

• Look at systems from an attacker’s perspective:
‣ Decompose application: identify structure
‣ Determine and rank threats

‣ Determine countermeasures and mitigations

https://owasp.org/www-community/Threat_Modeling

Further reading:

https://owasp.org/www-community/Threat_Modeling

Definition: Threat Model

85

The abilities and resources of the attacker
• Threat models enable structured reasoning about the attack surface.

• Awareness of entry points (and associated threats) to break into the target.

• Look at systems from an attacker’s perspective:
‣ Decompose application: identify structure
‣ Determine and rank threats

‣ Determine countermeasures and mitigations

https://owasp.org/www-community/Threat_Modeling

Further reading:

https://owasp.org/www-community/Threat_Modeling

Exploiting Buffer Overflows

86

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

buffer

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Attackers can control the input of buffer to overwrite the stack!

Exploiting Buffer Overflows

87

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

buffer

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Attackers can control the input of buffer to overwrite the stack!

What are the interesting
targets to attackers?

Smashing the Stack

88

• Occurs when a buffer overflow overwrites data in the program stack.

• Successful exploits can overwrite the return address on the stack.
‣ Could lead to arbitrary code execution on the target machine

Smashing the Stack

89

What happens if we input a large string?
./demo ffffffffffffffffffffffff…fffff
Segmentation fault

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Smashing the Stack: What Happened?

90

What happens if we input a large string?

./example ffffffffffffffffffffffff…fffff

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

F

F
F
…
F
F

• Return to an invalid address

• Write to an unwritable address

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Smashing the Stack: Figure out a Nasty Input

91

./demo

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

What to input?

e.g., we can set the ret. addr.
to the point after “x = 1;”

Address of the instruction calling printf

Definition: Software Security

92

Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening
•Good things include functionality or legal information access.

• Tradeoff between functionality and security is the key.

• Buggy voting software/hardware

• Changed e-voting software by insiders

• …

E-Voting
Good things: convenience of voting; fast tallying; voting for the disabled; …
The convenience comes with risks

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Smashing the Stack: Figure out a Nasty Input

93

./demo

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

F

F
F
…
F

What to input?

e.g., we can set the ret. addr.
to the point after “x = 1;”

Address of the instruction calling printf

Smashing the Stack: Code Injection

94

Stack frame of
main()

low address

Return Address

high address

main’s rbp

Injected code

rbp

rsp

Address of the start of the injected instructions

Code Injection

95

• Attacker creates a malicious input—a specially crafted input that
contains a pointer to malicious code included in the input.

• When the function returns, control is transferred to the malicious code.
‣ Injected code runs with the permission of the vulnerable program when

the function returns.
‣ Programs running with root or other elevated privileges are normally targeted.

Smashing the Stack: Injecting Shell Code

96

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

rbp

rsp

• This brings up a shell.

• Attackers can execute any command in the shell.

• The shell has the same privilege as the process.

• Good news:
‣ C/C++ stack is not executable by default.

• Bad news:
‣ Code injection works in other cases, e.g.

JIT, certain embedded systems, etc.

97

How to circumvent this
non-executable-stack restriction?

Exploiting Existing and Executable Code

98

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

How about “returning” to some existing code?

Exploiting Existing and Executable Code

99

• system() libc function

Exploiting Existing and Executable Code

100

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

“return” to system()

Return-to-libc(ret2libc) Attack: Exploiting system()

101

• system() libc function

Exploiting ret2libc on x86-32

102
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

Stack memory layout of a 32-bit vulnerable program

https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

System V ADM64 Calling Convention

103

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

h

high address

low address

g

xx
yy
zz

rdi a
rsi b
rdx c
rcx d
r8 e
r9 f

rax zz + 20

rsp

Return Address
saved rbp

104

How to put malicious data
in target registers?

105

Come to the Next Lecture!

GDB (GNU Debugger)

106

Debugger: A program that debuggs (examines) other programs.
• See what status a running/crashed program is in.
‣ Inspect virtual addresses and registers

https://medium.com/@amit.kulkarni/gdb-basics-bf3407593285

GDB basics:

https://owasp.org/www-community/Threat_Modeling

GDB (GNU Debugger)

107

• Examine code (source and assembly)

• Control execution
‣ Break point (where to stop)

‣ Next line/instruction/next function/break point

• Examine memory/register
‣ Variable’s value

‣ Value in register

‣ Value in a virtual address

• Powerful commands/techniques
‣info
‣define hook-stop
‣help + command name

Other Tools for Studying Binaries

108

•objdump
•strings
•readelf
•nm
•hexdump
•ldd

