
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to Gang Tan of PSU.

Outline of Today’s Lecture

2

• Brief review of last lecture

• Return-oriented Programming (ROP)

• Integer overflows

• Heap overflows

Programming Correctly in C is (Extremely) Hard

3

Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Pointer: Capability to manipulate memory.
• For C, pointer is usually implemented as a virtual address.

C pointers can do almost arbitrary memory manipulation!
• The correctness is at the discretion of programmers.

• But this is not the only way to implement pointers.

Buffer Overflows

4

Reading/writing a buffer out of its bounds.

• It is C/C++ programmers’ job to ensure such errors do not happen.
• In contract, most modern languages (e.g., Java, Rust, …) prevent

buffer overflows by performing automatic bounds checking.
• The first Internet worm, Morris Worm, and many subsequent ones

(CodeRed, Blaster, ...) exploited buffer overflows.
• Buffer overflows are still among the most commonly exploited vulnerabilities.

p_arr

int array[5]

1 2 3 4 55 … 42

Better String Library Functions

5

• Instead of strcpy(), use strncpy()
• Instead of strcat(), use strncat()
• Instead of sprintf(), use snprintf()

Null-termination Errors

6

int main(int argc, char* argv[]) {
 char a[16], b[16];
 strncpy(a, "0123456789abcdef", sizeof(a));
 printf("%s",a);
 strcpy(b, a);
}

What will be printed out?

• a[] not properly terminated.

‣ Undefined behaviors, e.g., segmentation fault  
if printf is executed.

Example Illustrating Stack Buffer Overflows

7

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

Compiled by clang-14 on Linux/AMD64

Function Calls: Stack

8

Stack frame of
main()

low address

high address

rsp

rbp

Before the call

Stack frame of
main()

low address

Return Address

high address

rsp

rbp

After the call

Function Initialization: Stack

9

Before the call

Stack frame of
main()

low address

Return Address

high address

rsp

rbp

After the call

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

buffer

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Function Return: Stack

10

Before the call After the call

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

buffer

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Stack frame of
main()

low address

Return Address

high address

rbp

rsp
main’s rbp

buffer

Smashing the Stack: What Happened?

11

What happens if we input a large string?

./example ffffffffffffffffffffffff…fffff

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

Stack frame of
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

F

F
F
…
F
F

• Return to an invalid address

• Write to an unwritable address

Smashing the Stack: Injecting Shell Code

12

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

rbp

rsp

• This brings up a shell.

• Attackers can execute any command in the shell.

• The shell has the same privilege as the process.

• Good news:
‣ C/C++ stack is not executable by default.

• Bad news:
‣ Code injection works in other cases, e.g. JIT.

Exploiting Existing and Executable Code

13

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

“return” to system()

Return-to-libc(ret2libc) Attack: Exploiting system()

14

• system() libc function

Exploiting ret2libc on x86-32

15
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

Stack memory layout of a 32-bit vulnerable program

https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

System V AMD64 Calling Convention

16

How functions/subroutines pass arguments and return values at the
macro-architecture level.

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

• Where to put all the arguments?

• Where to put the return value?

• Arguments are passed
‣ in registers: rdi, rsi, rdx, rcx, r8, r9

‣ then via stack

• Return value is passed via
‣ in registers: rax, rdx

‣ then via stack

x86-64/AMD64 Calling Convention

17

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

h

high address

low address

g

xx
yy
zz

rdi a
rsi b
rdx c
rcx d
r8 e
r9 f

rax zz + 20

rsp

Return Address
saved rbp

18

How to put malicious data
in target registers?

Limitations of ret2libc Attacks

19

• On AMD64 (and many other arch, e.g., AArch64), function arguments 
are first passed via registers instead of stack.

• Limited exploitable functions
‣ system() and other “profitable” library functions could be removed.

• Can only execute straight-line code
‣ Desired malicious computation may be invalidated by functions themselves.

20

Why do we need functions?

21

Functions facilitate software development,
but are not necessary for computations.

Exploiting Existing and Executable Code

22

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

“return” to system()

How about setting the argument and executing the same instructions
from other places?

Return-oriented Programming (ROP)

23

• Exploiting memory corruption bugs

An exploit technique that allows arbitrary code execution without
calling any functions.

‣ Often starting with a corrupted return address
• Chaining code sequences, called gadgets, that end with a ret
‣ Generally, gadgets ending with control flow transfer instructions, e.g. jmp

• Turing-complete
‣ Memory operations

‣ Arithmetic and logic

‣ Control flow

Return-oriented Programming (ROP)

24

• Use ret to jump to the “profitable” instructions to the attacker’s interest

mov (%rsp), %rip
add $8, %rsp ret

Controlling what rsp enables controlling the

next to-be-executed instruction.

• Use rsp as a confused deputy for rip
‣ Attackers use rsp to control the flow of the victim program.

Note this instruction is for demonstration.
rip cannot be explicitly updated.

Exploiting Multiple ret

25

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

ret2libc exploits one ret instruction.

How about exploiting multiple ret?

Chaining Multiple ret

26

low address

high address

controlled ret addr n
…

controlled ret addr 2
controlled ret addr 1 mov %rax, %rbx; ret Gadget 1

mov $32, %rcx; pop %rcx; ret

Gadget n…; ret

Gadget 2

Attackers execute instructions of their choosing by
corrupting the stack with crafted return addresses
and payloads of target instructions.

mov (%rsp), %rip
add $8, %rsp ret

Start from a
buffer overflow

Loading a Constant

27

How to load a constant (e.g. 0x32) into a register?

• Option 1: Find a gadget like mov $32, %rax; ret

mov $32, %rax
ret

low address

high address

gadget_n’s addr
…

gadget_1’s addr
gadget_0’s addrrsp

• Find this gadget in code

• Put the gadget’s address on stack

• ret to the gadget

• Continue with the next gadget

Loading a Constant

28

How to load a constant (e.g. 0x32) into a register?

low address

high address

gadget_n’s addr
…

gadget_1’s addr
gadget_0’s addrrsp mov $32, %rax

ret

rax 123456
rsp 0x40000
rip ret’s address

ret

Red indicates the next instruction to execute.

• Option 1: Find a gadget like mov $32, %rax; ret

Loading a Constant

29

How to load a constant (e.g. 0x32) into a register?

low address

high address

gadget_n’s addr
…

gadget_1’s addr
gadget_0’s addr

rsp
mov $32, %rax
ret

ret

Red indicates the next instruction to execute.

rax 123456
rsp 0x40008
rip gadget_0’s address

• Option 1: Find a gadget like mov $32, %rax; ret

Loading a Constant

30

How to load a constant (e.g. 0x32) into a register?

low address

high address

gadget_n’s addr
…

gadget_1’s addr
gadget_0’s addr

mov $32, %rax
ret

ret

Red indicates the next instruction to execute.

rax 32
rsp 0x40008
rip gadget_0’s ret addr

• Option 1: Find a gadget like mov $32, %rax; ret

rsp

Loading a Constant

31

How to load a constant (e.g. 0x32) into a register?

low address

high address

gadget_n’s addr
…

gadget_1’s addr
gadget_0’s addr

rsp

mov $32, %rax
ret

ret

Red indicates the next instruction to execute.

rax 32
rsp 0x40010
rip gadget_1’s addressgadget_1

• Option 1: Find a gadget like mov $32, %rax; ret

Loading a Constant

32

How to load an arbitrary constant (e.g. 0xdeadbeef) into a register?

• Option 1: Pop the constant to the target register

gadget_n’s addr

low address

high address

…
gadget_1’s addr

gadget_0’s addrrsp pop %rax
ret

0xdeadbeef

• Put gadget’s address on stack

• Put target constant on stack (above rsp)

• ret makes rsp point to the constant

• pop loads the constant into the register

Loading a Constant

33

How to load an arbitrary constant (e.g. 0xdeadbeef) into a register?

• Option 1: Pop the constant to the target register

rsp pop %rax
ret

rax 123456
rsp 0x40000
rip ret’s address

ret

gadget_n’s addr

low address

high address

…
gadget_1’s addr

gadget’s addr
0xdeadbeef

Loading a Constant

34

How to load an arbitrary constant (e.g. 0xdeadbeef) into a register?

• Option 1: Pop the constant to the target register

rsp
pop %rax
ret

rax 123456
rsp 0x40008
rip gadget_0’s address

ret

gadget_n’s addr

low address

high address

…
gadget_1’s addr

gadget’s addr
0xdeadbeef

Loading a Constant

35

How to load an arbitrary constant (e.g. 0xdeadbeef) into a register?

• Option 1: Pop the constant to the target register

rsp

pop %rax
ret

rax 0xdeadbeef
rsp 0x40010
rip gadget_0’s ret

address
ret

gadget_n’s addr

low address

high address

…
gadget_1’s addr

gadget’s addr
0xdeadbeef

Loading a Constant

36

How to load an arbitrary constant (e.g. 0xdeadbeef) into a register?

• Option 1: Pop the constant to the target register

rsp

pop %rax
ret

rax 0xdeadbeef
rsp 0x40018
rip gadget_1’s address

ret

gadget_n’s addr

low address

high address

…
gadget_1’s addr

gadget’s addr
0xdeadbeef

gadget_1

Loading From A Memory Address

37

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

• Common load: mov offset(%rax), %rbx
1. Set up the target address to one register

2. Load the value from the address into the target register

‣ We need two gadgets.

gadget_2’s addr

Loading From A Memory Address

38

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rsp

…

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

• Put gadgets’ addresses on stack

• Put payload addresses on stack

• gadget_0 prepares target address 1

• gadget_1 loads from adjusted address0x400040

0x400000 target value

Loading From A Memory Address

39

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rax 0x123456
rbx 0x7890ab
rsp 0x400020
rip ret’s address

ret

gadget_2’s addr

rsp

…

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

0x400040

0x400000 target value

Loading From A Memory Address

40

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rax 0x123456
rbx 0x7890ab
rsp 0x400028
rip gadget_0’s address

ret

gadget_2’s addr
…

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

0x400040

0x400000

rsp

target value

Loading From A Memory Address

41

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rax 0x400040
rbx 0x7890ab
rsp 0x400030
rip gadget_0 ret’s address

ret

gadget_2’s addr
…

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

0x400040

0x400000

rsp

target value

Loading From A Memory Address

42

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rax 0x400040
rbx 0x7890ab
rsp 0x400038
rip gadget_1’s address

ret

gadget_2’s addr
…

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

0x400040

0x400000

rsp

-64

target value

Loading From A Memory Address

43

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rax 0x400040
rbx 0x200000
rsp 0x400038
rip gadget_1’s ret address

ret

gadget_2’s addr
…

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

0x400040

0x400000

rsp

target value

Loading From A Memory Address

44

How to load a value in memory into a register?
• e.g., want to load the value in address 0x400000 into rbx.

rax 0x400040
rbx 0x200000
rsp 0x400040
rip gadget_2’s address

ret

gadget_2’s addr
rsp …

low address

high address

gadget_1’s addr

gadget_0’s addr pop %rax
ret

mov -64(%rax), %rbx
ret

0x400040

0x400000

gadget_2

target value

45

What if the controllable stack space is
insufficient for gadgets and their payloads?

Stack Pivoting

46

How to enable a larger “stack”?

• Pop the target address to rsp, and ret.

low address

high address

gadget_n’s addr
…

target rsp
gadget_0’s addrrsp pop %rsp

ret

ret

• Put gadget’s address on stack

• Put target rsp’s address above

• Pop the target address to rsp

Stack Pivoting

47low address

high address

gadget_n’s addr
…

0x300000
gadget_0’s addrrsp pop %rsp

ret

ret

rsp 0x400000
rip ret’s address

How to enable a larger “stack”?

• Pop the target address (e.g. 0x300000) to rsp, and ret.

0x300000

Stack Pivoting

48low address

high address

gadget_n’s addr
…

0x300000
gadget_0’s addr

rsp
pop %rsp
ret

ret

rsp 0x400008
rip gadget’s address

pop %rsp is special:
•rsp gets incremented by one word.

•Data pointed by old rsp is loaded to rsp.

How to enable a larger “stack”?

0x300000

• Pop the target address (e.g. 0x300000) to rsp, and ret.

Stack Pivoting

49low address

high address

gadget_n’s addr
…

0x300000
gadget_0’s addr

rsp

pop %rsp
ret

ret

rsp 0x400010
rip gadget’s address

pop %rsp is special:
•rsp gets incremented by one word.

•Data pointed by old rsp is loaded to rsp.

How to enable a larger “stack”?

0x300000

• Pop the target address (e.g. 0x300000) to rsp, and ret.

Stack Pivoting

50low address

high address

gadget_n’s addr
…

0x300000
gadget_0’s addr

rsp

pop %rsp
ret

ret

rsp 0x300000
rip gadget ret’s address

pop %rsp is special:
•rsp gets incremented by one word.

•Data pointed by old rsp is loaded to rsp.

How to enable a larger “stack”?

• Pop the target address (e.g. 0x300000) to rsp, and ret.

Finding ROP Gadgets

51

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

ROP gadgets: Instructions sequences ending with a ret.

Finding ROP Gadgets

52

ROP gadgets: Instructions sequences ending with a ret.

How many gadgets can you find in these two functions?

ROP Gadgets Are Abundant

53

ROP gadgets: Instructions sequences ending with a ret.
• Linked libraries provide a plethora of instructions.

‣ Allows unintended instruction sequences
• x86 ISA uses variable-length instructions.

ROP Gadgets Are Abundant

54

ROP gadgets: Instructions sequences ending with a ret.

•Linked libraries provide a plethora of instructions.
‣ Allows unintended instruction sequences

• x86 ISA uses variable-length instructions.

7 English words

Linkedlibrariesprovideaplethoraofinstructions. How many words can you find?
linked

link
ink

vid let fin ion

Unintended words become available.

any scan

ROP Gadgets Are Abundant

55

ROP gadgets: Instructions sequences ending with a ret.
• Linked libraries provide a plethora of instructions.

‣ Allows unintended instruction sequences
• x86 ISA uses variable-length instructions.

ret is encoded as 0xc3 in hexadecimal format.

ROP Gadgets Are Abundant

56

ROP gadgets: Instructions sequences ending with a ret.
• Linked libraries provide a plethora of instructions.

‣ Allows unintended instruction sequences
• x86 ISA uses variable-length instructions.

ret is encoded as 0xc3 in hexadecimal format.

How to Find ROP Gadgets

57

• Start from a ret (0xc3) and backtrack to find gadgets.

ret

add … sub … push … … pop …

add … xor … and … and … … leave …

‣ Check whether the previous n bytes (n <= 15 for AMD64) form an instruction

‣ Recurse from the previously found instruction

How to Find ROP Gadgets

58

• Start from a ret (0xc3) and backtrack to find gadgets.
‣ Check whether the previous n bytes (n <= 15 for AMD64) form an instruction

‣ Recurse from the previously found instruction

ROP Thesis

59

“In any sufficiently large body of x86 executable code there will
exist sufficiently many useful code sequences that an attacker who
controls the stack will be able, by means of the return-into-libc
techniques we introduce, to cause the exploited program to
undertake arbitrary computation.”

The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86),
by Hovav Shacham.

Also true in almost all other major architectures.

Find ROP Gadgets

60

ROPGagdet: A tool that examines binaries to find code-reuse gadgets.

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

How many ret gadgets in this program?

Find ROP Gadgets

61

ROPGagdet: A tool that examines binaries to find code-reuse gadgets.

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

How many ret gadgets in this program
with statically-linked libraries?

Find ROP Gadgets

62

ROPGagdet: A tool that examines binaries to find code-reuse gadgets.

How many ret gadgets are in libc?

Return-oriented Programming (ROP)

63

• Exploiting memory corruption bugs

An exploit technique that allows arbitrary code execution without
calling any functions.

‣ Often starting with a corrupted return address
• Chaining code sequences, called gadgets, that end with a ret
‣ Generally, gadgets ending with control flow transfer instructions, e.g. jmp

• Turing-complete
‣ Memory operations

‣ Arithmetic and logic

‣ Control flow

What are the lessons we can learn from ROP?

64

“⼀花⼀世界，⼀叶⼀菩提。” —《华严经》

“A single flower contains a whole world;
a single leaf embodies enlightenment.”
 —Buddhāvataṃsaka Sūtra

Integer Overflows

69

Signed vs. Unsigned Numbers

70

char buf[N];
int len;
...
if (len > N) {
 error("Invliad length");
 return;
}
read(fd, buf, len);

What if len is negative?

ssize_t read(int fd, void *buf, size_t count);

len will be cast to unsigned and negative length overflows,

e.g., -1 -> 2^32 - 1 = 4294967295

Integer Overflows

71

An integer overflow occurs when an integer is increased beyond
its maximum value or decreased beyond its minimum value.

• Standard integer types (signed)
‣ signed char, short int, int, long int, long long int

• Signed overflow vs unsigned overflow

‣ An unsigned overflow occurs when the underlying representation can
no longer represent an integer value.

‣ A signed overflow occurs when a value is carried over to the sign bit.

Integer Overflow Examples

72

unsigned int ui;
signed int si;
ui = UINT_MAX; // 2^32 - 1 = 4,294,967,295
ui++;
printf("ui = %u\n", ui);

si = INT_MAX; // 2^31 - 1 = 2,147,483,647
si++;
printf("si = %d\n”, si);

What does it print?

What does it print?

0

-2^31 = -2,147,483,648

Integer Overflow Examples

73

unsigned int ui;
signed int si;
ui = 0;
ui--;
printf("ui = %u\n", ui);

si = INT_MIN; // -2^31 = -2,147,483,648
si--;
printf("si = %d\n”, si);

What does it print?

What does it print?

2^32 - 1 = 4,294,967,295

2^31 - 1= 2,147,483,647

Security Threats of Integer Overflows

74

int main(int argc, char *const *argv) {
 unsigned short int total;
 total = strlen(argv[1]) + strlen(argv[2]) + 1;
 char *buff = (char *) malloc(total);
 strcpy(buff, argv[1]);
 strcat(buff, argv[2]);
}

What if the total variable overflows because of the addition operation?

Take two strings from user input, and concatenate them on heap.

Vulnerability: JEPG Example

75

Based on a real-world vulnerability in the handling of the comment field
in JPEG files

void getComment(unsigned int len, char *src) {
 unsigned int size;
 size = len;
 char *comment = (char *)malloc(size + 1);
 memcpy(comment, src, size);
 return;
}

How to fix it?

Will overflow to 0 if size is INT_MAX

Vulnerability: JEPG Example

76

Based on a real-world vulnerability in the handling of the comment field
in JPEG files

void getComment(unsigned int len, char *src) {
 unsigned int size;
 size = len - 2;
 char *comment = (char *)malloc(size + 1);
 memcpy(comment, src, size);
 return;
}

Any problem?

What if we do “getComment(1, “My Comment”);”?
• Overflow to cause malloc to allocate zero bytes.

Vulnerability: Truncation Errors

77

int func(char *name, unsigned int cbBuf) {
 unsigned short bufSize = cbBuf;
 char *buf = (char *)malloc(bufSize);
 if (buf) {
 memcpy(buf, name, cbBuf);
 …
 free(buf);
 return 0;
 }
 return 1;
}

What if we call the function with cbBuf greater than USHRT_MAX?

Heap Overflows

78

Buffer Overflows

79

• Stack overflow: overflowing a memory region on the stack
(e.g., overwriting a return address)

• Heap overflow: overflowing a memory region dynamically
allocated on the heap

char *packet = (char *)malloc(1000);
while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
if (authenticated)
 ProcessPacket(packet);

What happens if PacketRead overflows

the packet buffer and overwrite important

data in memory?
• e.g., authenticated is on the heap and corrupted

Overflowing Heap Critical User Data

80

typedef struct chunk {
 char inp[64]; /* vulnerable input buffer */
 void (*process)(char *); /* pointer to function */
} chunk_t;

void showlen(char *buf) {
 int len = strlen(buf);
 printf("buffer5 read %d chars\n", len);
}

int main(int argc, char *argv[]) {
 chunk_t *next = malloc(sizeof(chunk_t));
 next->process = showlen;
 printf("Enter value: ");
 gets(next->inp);
 next->process(next->inp);
 printf("buffer5 done\n");
}

Overflow the buffer on the heap to set the

function pointer to an arbitrary address.

Overflow Heap Metadata

81

• Heap allocators (i.e., heap memory managers)
‣ What regions have been allocated and their sizes

‣ What regions are available for allocation

• Heap allocators maintain metadata such as chunk size, previous, and
next pointers to other chunks.
‣ Metadata are adjusted during heap-management functions.

- malloc(), callaoc(), realloc(), etc. and free()
‣ Heap metadata are often adjacent to heap user data

Example Heap Allocator

82

• Maintain a doubly-linked list of allocated and free chunks

• malloc() and free() modify this list

struct chunk {
 size_t ps; // prev_size
 size_t sz; // size
 chunk_t *fd; // forward pointer
 chunk_t *bk; // backward pointer
 unsigned char data[]; // allocated space for user data
};

Example Heap Allocator

83

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• ps: prev_size

• sz: size

• fd: forward pointer

• bk: backward pointer

• data: allocated space for user data

Example Heap Allocator

84

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() removes a chunk from free list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

Attacking the Example Heap Allocator

85

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

How to exploit this vulnerability for arbitrary writes (write-where-what vul.)?

Attacking the Example Heap Allocator

86

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

‣ Set chunk2->fd to be value
‣ Set chunk2->bk to be addr - fd_offset, where fd_offset is the

offset of the fd field in the chunk structure.

• Suppose the attacker wants to write value to memory address addr

Attacking the Example Heap Allocator

87

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() changes the program as follows:
‣ (addr - fd_offset)->fd = value, the same as (*addr) = value
‣ value->bk = addr - offset

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

Attacking the Example Heap Allocator

88

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3
addr - fd_offset

value

value to write here
addr
addr - fd_offset

Enables arbitrary memory write!

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

• malloc() changes the program as follows:
‣ (addr - fd_offset)->fd = value, the same as (*addr) = value
‣ value->bk = addr - offset

