
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to Gang Tan of PSU.

Announcements

2

• Assignment 1 due today
• Assignment 2 released
• (Mini-) Assignment 1.5: Prepare at least one question about

anything covered so far for the next lecture

Outline

3

• Review: ROP, Integer Overflows, and Heap Overflows
• Temporal Memory Safety
• Format String Vulnerabilities

Limitations of ret2libc Attacks

4

• On AMD64 (and many other arch, e.g., AArch64), function arguments 
are first passed via registers instead of stack.

• Limited exploitable functions
‣ system() and other “profitable” library functions could be removed.

• Can only execute straight-line code
‣ Desired malicious computation may be invalidated by functions themselves.

Exploiting Existing and Executable Code

5

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

“return” to system()

How about setting the argument and executing the same instructions
from other places?

6

What really matters are the instructions
and how they are arranged.

Return-oriented Programming (ROP)

7

• Exploiting memory corruption bugs

An exploit technique that allows arbitrary code execution without
calling any functions.

‣ Often starting with a corrupted return address
• Chaining code sequences, called gadgets, that end with a ret
‣ Generally, gadgets ending with control flow transfer instructions, e.g. jmp

• Turing-complete
‣ Memory operations

‣ Arithmetic and logic

‣ Control flow

Return-oriented Programming (ROP)

8

• Use ret to jump to the “profitable” instructions to the attacker’s interest

mov (%rsp), %rip
add $8, %rsp ret

Controlling what rsp enables controlling the

next to-be-executed instruction.

• Use rsp as a confused deputy for rip
‣ Attackers use rsp to control the flow of the victim program.

Note this instruction is for demonstration.
rip cannot be explicitly updated.

Chaining Multiple ret

9

low address

high address

controlled ret addr n
…

controlled ret addr 2
controlled ret addr 1 mov %rax, %rbx; ret Gadget 1

mov $32, %rcx; pop %rcx; ret

Gadget n…; ret

Gadget 2

Attackers execute instructions of their choosing by
corrupting the stack with crafted return addresses
and payloads of target instructions.

mov (%rsp), %rip
add $8, %rsp ret

Start from a
buffer overflow

Loading a Constant

10

How to load an arbitrary constant (e.g. 0xdeadbeef) into a register?

• Option 1: Pop the constant to the target register

rsp

pop %rax
ret

rax 0xdeadbeef
rsp 0x40018
rip gadget_1’s address

ret

gadget_n’s addr

low address

high address

…
gadget_1’s addr

gadget’s addr
0xdeadbeef

gadget_1

Stack Pivoting

11low address

high address

gadget_n’s addr
…

0x300000
gadget_0’s addr

rsp

pop %rsp
ret

ret

rsp 0x300000
rip gadget ret’s address

pop %rsp is special:
•rsp gets incremented by one word.

•Data pointed by old rsp is loaded to rsp.

How to enable a larger “stack”?

• Pop the target address (e.g. 0x300000) to rsp, and ret.

Finding ROP Gadgets

12

ROP gadgets: Instructions sequences ending with a ret.

How many gadgets can you find in these two functions?

ROP Gadgets Are Abundant

13

ROP gadgets: Instructions sequences ending with a ret.
• Linked libraries provide a plethora of instructions.

‣ Allows unintended instruction sequences
• x86 ISA uses variable-length instructions.

ret is encoded as 0xc3 in hexadecimal format.

ROP Thesis

14

“In any sufficiently large body of x86 executable code there will
exist sufficiently many useful code sequences that an attacker who
controls the stack will be able, by means of the return-into-libc
techniques we introduce, to cause the exploited program to
undertake arbitrary computation.”

The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86),
by Hovav Shacham.

Also true in almost all other major architectures.

Find ROP Gadgets

15

ROPGagdet: A tool that examines binaries to find code-reuse gadgets.

void foo(int a, int b) {
 char buffer[12];
 gets(buffer);
 return;
}

int main() {
 int x;
 x = 0;
 foo(1,2);
 x = 1;
 printf(“%d\n",x);
 return 0;
}

How many ret gadgets in this program?

Integer Overflows

17

An integer overflow occurs when an integer is increased beyond
its maximum value or decreased beyond its minimum value.

• Standard integer types (signed)
‣ signed char, short int, int, long int, long long int

• Signed overflow vs unsigned overflow

‣ An unsigned overflow occurs when the underlying representation can
no longer represent an integer value.

‣ A signed overflow occurs when a value is carried over to the sign bit.

Integer Overflow Examples

18

unsigned int ui;
signed int si;
ui = UINT_MAX; // 2^32 - 1 = 4,294,967,295
ui++;
printf("ui = %u\n", ui);

si = INT_MAX; // 2^31 - 1 = 2,147,483,647
si++;
printf("si = %d\n”, si);

What does it print?

What does it print?

0

-2^31 = -2,147,483,648

Integer Overflow Examples

19

unsigned int ui;
signed int si;
ui = 0;
ui--;
printf("ui = %u\n", ui);

si = INT_MIN; // -2^31 = -2,147,483,648
si--;
printf("si = %d\n”, si);

What does it print?

What does it print?

2^32 - 1 = 4,294,967,295

2^31 - 1= 2,147,483,647

Buffer Overflows

20

• Stack overflow: overflowing a memory region on the stack
(e.g., overwriting a return address)

• Heap overflow: overflowing a memory region dynamically
allocated on the heap

Overflowing Heap Critical User Data

21

typedef struct chunk {
 char inp[64]; /* vulnerable input buffer */
 void (*process)(char *); /* pointer to function */
} chunk_t;

void showlen(char *buf) {
 int len = strlen(buf);
 printf("buffer5 read %d chars\n", len);
}

int main(int argc, char *argv[]) {
 chunk_t *next = malloc(sizeof(chunk_t));
 next->process = showlen;
 printf("Enter value: ");
 gets(next->inp);
 next->process(next->inp);
 printf("buffer5 done\n");
}

Overflow the buffer on the heap to set the

function pointer to an arbitrary address.

Overflow Heap Metadata

22

• Heap allocators (i.e., heap memory managers)
‣ What regions have been allocated and their sizes

‣ What regions are available for allocation

• Heap allocators maintain metadata such as chunk size, previous, and
next pointers to other chunks.
‣ Metadata are adjusted during heap-management functions.

- malloc(), callaoc(), realloc(), etc. and free()
‣ Heap metadata are often adjacent to heap user data

Example Heap Allocator

23

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• ps: prev_size

• sz: size

• fd: forward pointer

• bk: backward pointer

• data: allocated space for user data

struct chunk {
 …… // Other fields
 size_t prev_size; // Size of the previous chunk
 size_t size; // Size of the current chunk
 struct chunk *fd; // Pointer to the next chunk
 struct chunk *bk; // Pointer to the previous chunk
}

Example Heap Allocator

24

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() removes a chunk from free list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

Attacking the Example Heap Allocator

25

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

How to exploit this vulnerability for arbitrary writes (write-where-what vul.)?

Attacking the Example Heap Allocator

26

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

‣ Set chunk2->fd to be value
‣ Set chunk2->bk to be addr - fd_offset, where fd_offset is the

offset of the fd field in the chunk structure.

• Suppose the attacker wants to write value to memory address addr

Attacking the Example Heap Allocator

27

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3

• malloc() changes the program as follows:
‣ (addr - fd_offset)->fd = value, the same as (*addr) = value
‣ value->bk = addr - offset

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

Attacking the Example Heap Allocator

28

ps sz fd bk data ps sz fd bk data ps sz fd bk data

Chunk1 Chunk2 Chunk3
addr - fd_offset

value

value to write here
addr
addr - fd_offset

Enables arbitrary memory write!

• malloc() removes a chunk from allocated list
‣chunk2->bk->fd = chunk2->fd
‣chunk2->fd->bk = chunk2->bk

• By overflowing chunk2, attacker controls bk and fd of chunk2

• malloc() changes the program as follows:
‣ (addr - fd_offset)->fd = value, the same as (*addr) = value
‣ value->bk = addr - offset

Temporal Memory Safety

29

Memory Management

30

How does C/C++ manages memory?
• Global data: reserve space during program initialization; never free

• Stack: automatically allocated/deallocated at function start/end

• Heap: manual management, i.e., explicit allocations/deallocations

‣ C++ supports partially automatic memory management (RAII)

Temporal Memory Safety Bugs

ptr

0x1000

0x10ff

Dereference of ptr is a
use-after-free (UAF) bug.

31

memory
objectFreeing the ptr again is a

double free bug.

Temporal Memory Safety Bugs

ptr
Dereference of ptr is a

use-after-free (UAF) bug.

32

new
memory
object

Security risks
Information leaking

Data corruption

Denial of service

ptr1 0x1000

0x10ff

https://support.apple.com/en-us/125108

Temporal Memory Safety Vulnerabilities are Severe

33

https://support.apple.com/en-us/125108

Kernel

Available for: Mac Studio (2022 and later), iMac (2019 and later), Mac Pro (2019 and later) …

Impact: An app may be able to execute arbitrary code with kernel privileges

Description: A use-after-free issue was addressed with improved memory management.

CVE-2023-41995: Certik Skyfall Team, and pattern-f (@pattern_F_) of Ant Security Light-Year Lab

CVE-2023-42870: Zweig of Kunlun Lab

https://support.apple.com/en-us/HT213940

Temporal Memory Safety Vulnerabilities are Severe

34

https://support.apple.com/en-us/HT213940

Use After Free

35

36

Use-After-Free (UAF)

37

Program frees memory then references that memory as if it were
still valid.
• Adversaries can control data written using the freed pointer.

• AKA, use of dangling pointers

Use-After-Free (UAF)

38

int main(int argc, char **argv) {
 char *buf1, *buf2;

 buf1 = (char *) malloc(BUFSIZE1);
 free(buf1);
 buf2 = (char *) malloc(BUFSIZE2);
 strncpy(buf1, argv[1], BUFSIZE1-1);
 …
}

• When the first buffer is freed, that memory is available for reuse right away.

• Then, the following buffers are possibly allocated within that memory region.

• Finally, the write using the freed pointer may overwrite buf2 (and its metadata).

What is wrong with this program?

Use-After-Free (UAF)

39

struct A {
 void (*fnptr)(char *arg);
 char *buf;
};

struct B {
 long int B1;
 long int B2;
 char info[32];
};

• Most effective attacks exploit data of another type.

Free A, and allocate B.
What might happen?

x = (struct A *)malloc(sizeof(struct A));
free(x);
y = (struct B *)malloc(sizeof(struct B));

Overflowing Heap Critical User Data

40

typedef struct chunk {
 char inp[64]; /* vulnerable input buffer */
 void (*process)(char *); /* pointer to function */
} chunk_t;

void showlen(char *buf) {
 int len = strlen(buf);
 printf("buffer5 read %d chars\n", len);
}

int main(int argc, char *argv[]) {
 chunk_t *next = malloc(sizeof(chunk_t));
 next->process = showlen;
 printf("Enter value: ");
 gets(next->inp);
 next->process(next->inp);
 printf("buffer5 done\n");
}

Overflow the buffer on the heap to set the

function pointer to an arbitrary address.

Use-After-Free (UAF)

41

struct A {
 void (*fnptr)(char *arg);
 char *buf;
};

struct B {
 long int B1;
 long int B2;
 char info[32];
};

• Most effective attacks exploit data of another type.

x = (struct A *)malloc(sizeof(struct A));
free(x);
y = (struct B *)malloc(sizeof(struct B));

y->B1 = 0xDEADBEEF;
x->fnptr(x->buf);

• Assume that
‣ Attackers control what to

write to y->B1
‣ A later UAF that performs a

call using x->fnptr
• One of the most commonly

exploited patterns.

Vulnerabilities Caused By UAF

42

• General pattern of UAF vulnerabilities:
‣ A new heap object N is allocated over the heap location previously occupied 

by an freed object O.
‣ Pointer p points to and is used to access N.

‣ Pointer q points to and was used to access O.

‣ p and q are both used to access the same memory region.

• Consequences
‣ Arbitrary code execution

‣ Information leak

‣ Data corruption

- Attackers control q to access N.

- Attackers control N and wait for q to access N.

Vulnerabilities Caused By UAF

43

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 struct O *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Write through p and read through q
leads to arbitrary code execution.
‣ exploit path: 16->5->7->17

Vulnerabilities Caused By UAF

44

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 struct O *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Read through q leads to information
leak.
‣ exploit path: 16->5->6->8->20

Vulnerabilities Caused By UAF

45

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 struct O *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Write through q and then read
through p leads to arbitrary code
execution.
‣ exploit path: 16->5->19->9

Vulnerabilities Caused By UAF

46

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 struct O *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Free through q corrupts N’s state.
‣ exploit path: 16->5->21

Temporal Memory Safety Bugs

ptr

0x1000

0x10ff

Dereference of ptr is a
use-after-free (UAF) bug.

47

memory
objectFreeing the ptr again is a

double free bug.

Double Free

48

int main(int argc, char **argv) {
 char *buf1, *buf2;
 buf1 = (char *) malloc(BUFSIZE1);
 free(buf1);
 buf2 = (char *) malloc(BUFSIZE2);
 strncpy(buf1, argv[1], BUFSIZE1-1);
 free(buf1);
 free(buf2);
}

What happens here?

Overflow Heap Metadata

49

• Heap allocators (i.e., heap memory managers)
‣ What regions have been allocated and their sizes

‣ What regions are available for allocation

• Heap allocators maintain metadata such as chunk size, previous, and
next pointers to other chunks.
‣Metadata are adjusted during heap-management functions.

- malloc(), callaoc(), realloc(), etc. and free()
‣ Heap metadata are often adjacent to heap user data

Double Free

50

int main(int argc, char **argv) {
 char *buf1, *buf2;
 buf1 = (char *) malloc(BUFSIZE1);
 free(buf1);
 buf2 = (char *) malloc(BUFSIZE2);
 strncpy(buf1, argv[1], BUFSIZE1-1);
 free(buf1);
 free(buf2);
}

What happens here?

• Free buf1, then allocate buf2
‣ buf2 may occupy the same memory space of buf1.

• buf2 gets user-supplied data

• Free buf1 again
‣ Which may use some buf2 data as metadata

‣ And may mess up buf2’s metadata

• Then free buf2, which uses really messed up metadata

Vulnerabilities Caused By UAF

51

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 struct O *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Double free
‣ exploit path: 16->21

Pitfalls of realloc

52

/* p is a pointer to dynamically allocated memory. */
void func(void *p, size_t size) {
 void *p2 = realloc(p, size);
 if (p2 == NULL) {
 free(p);
 return;
 }
}

void *realloc(void *ptr, size_t size);

• Change the size of object pointed by ptr to size

When size == 0, realloc() frees p.

Vulnerabilities Caused By UAF

53

• General pattern of UAF vulnerabilities:
‣ A new heap object N is allocated over the heap location previously occupied 

by an freed object O.
‣ Pointer p points to and is used to access N.

‣ Pointer q points to and was used to access O.

‣ p and q are both used to access the same memory region.

• Consequences
‣ Arbitrary code execution

‣ Information leak

‣ Data corruption

- Attackers control q to access N.

- Attackers control N and wait for q to access N.

Precisely controlling victim memory can be challenging.

Vulnerabilities Caused By UAF

54

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 struct O *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Write through p and read through q
leads to arbitrary code execution.
‣ exploit path: 16->5->7->17

Assume the attacker controls N.
“Tricking” bar() to execute line 17
that calls a function whose address
falls exactly to the first field of N
can be challenging.

Heap Spraying

55

An exploitation technique that attempts to put a sequence of bytes
on the heap to increase the likelihood of the victim program using
these attacker-supplied bytes.

Root Cause
Manual Memory Management

56

thttpd: A Lightweight HTTP Server Written in C

SLOC: 8,360

Call Graph of thttpd

throttle_buf = malloc(…);
Use and free throttle_buf

57

thttpd: A Lightweight HTTP Server Written in C
Use throttle_buf?

Call Graph of thttpd

58

SLOC: 8,360
UAF bug!

thttpd: A Lightweight HTTP Server Written in C

Call Graph of thttpd

Manually manage memory?

59

SLOC: 8,360

Prevent Temporal Memory Safety Bugs

60

• Difficult to detect because these often occur in complex runtime states
‣ Allocate in one function

‣ Free in another function

‣ Use in a third function

• It is not fun to check source code for all possible pointers.
‣ Are all uses accessing valid (not freed) references?

‣ In all possible runtime states!

Prevent Temporal Memory Safety Bugs

61

• Static and dynamic analysis to detect bugs

• Invalidate dangling pointers

• Minimize reuse of memory

• Runtime check on every memory dereference

Format String Vulnerabilities

62

Background: Variadic Functions

63

A function that accepts a variable number of arguments.

• Notable examples include printf family of functions in libc.
‣ printf, fprintf, sprintf, vprintf, etc.

• Libc provides facilities to define your own variadic functions, which
set of arguments followed by an optional list of additional arguments.
‣ va_list: a special type that acts like a pointer/cursor to walk through args.

‣ va_start(): initializes va_list to point to the first arg after the fixed args

‣ va_arg(): fetches the next argument in the list

‣ va_end(): signals that there are no more arguments.

Background: Variadic Functions

64

#include <stdarg.h>
#include <stdio.h>

double average(int count, ...) {
 va_list ap;
 double sum = 0;

 va_start(ap, count);
 for (int j = 0; j < count; ++j) {
 sum += va_arg(ap, int); /* Increments ap to the next argument. */
 }
 va_end(ap);

 return sum / count;
}

int main(int argc, char* argv[]) {
 printf("%f\n", average(3, 1, 2, 3));
 return 0;
}

https://en.wikipedia.org/wiki/Variadic_function

What if a wrong type is provided?

Format String Attacks

65

• Public since 1999
‣ First thought of as harmless programming errors

• Format string refers to the argument that specifies the format of a
string to functions like printf.
‣ e.g., printf (“i = %d with address %08x\n", i, &i);

• Functions taking format strings are commonly used.
‣ printf/sprintf/fprintf/snprintf/vprintf, etc.

‣ scanf/fscanf/sscanf
‣ syslog/vsyslog

‣ warn() and err() family of functions

x86-64/AMD64 Calling Convention

66

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

h

high address

low address

g

xx
yy
zz

rdi a
rsi b
rdx c
rcx d
r8 e
r9 f

rax zz + 20

rsp

Return Address
saved rbp

How Does printf Work in C?

67

printf (“i = %d with address %08x\n", i, &i);
• Prepare the three arguments: string address pointer, i, and &i
‣ through rdi, rsi, rdx on x86-64

‣ through stack on x86-32

• Invoke printf
• When control is inside printf, the function

looks for arguments in registers/stack.

frame for printf’s
caller

low address

high address

frame for printf

rsp
rdi str’s addr
rsi i
rdx i’s addr

How Does printf Work in C?

68

• What happens for the following printf

frame for printf’s
caller

low address

high address

frame for printf

rsp

printf (“i = %d with address %08x\n”);

• The compiler may warn but still accept the program.
‣ Pretending that the required arguments were

in the right place.

rdi str’s addr
rsi ???
rdx ???

Format String Attacks

69

int main(int argc, char *argv[]) {
 if (argc > 1) {
 printf(argv[1]);
 }
}

• What about the following simple program for echoing user input?

• Appears to be normal
• However, what would happen if the input is “hello%d%d%d%d%d%d%d”?
‣ i.e. printf(“hello%d%d%d%d%d%d%d”);
‣ It would print numbers from five registers and the stack.

- Allows attackers to peak unintended data
• What if arg[1] is “hello%s”?
‣ Likely a segmentation fault

confidentiality vulnerability

availability vulnerability

How to Leak Data In An Arbitrary Address

70

1. Put the target address in a location controlled by attackers

2. Trick the program to use (load) the target address

printf(buf);

buf = “target_addr%c%c…%s";
frame for printf’s

caller

low address

high address

frame for printf

rsp

How to Leak Data In An Arbitrary Address

71

1. Put the target address in a location controlled by attackers

2. Trick the program to use (load) the target address

printf(buf);

buf = “target_addr%c%c…%s";

low address

high address

frame for printf

rsp

target_addr

If buf lives on the stack of the caller of
printf, and it is controlled by attackers,
target_addr can be set. secret valuetarget_addr

Format String Attacks: Data Integrity Vulnerabilities

72

• There is a “%n” specifier for format strings.
‣ Writes the number of bytes already printed into a variable of

the programmer’ choice.

int i;
printf (“foobar%n\n", &i);
printf ("i = %d\n", i);

• i was assigned 6.

• “%n” has variants:
‣ “%hn”: short*

‣ “%hhn”: signed char*

Format String Attacks: Data Integrity Vulnerabilities

73

int main(int argc, char *argv[]) {
 if (argc > 1) {
 printf(argv[1]);
 }
}

• What if the user input is “foobar%n”?
‣ printf(“foobar%n”);

Format String Attacks: Data Integrity Vulnerabilities

74

• There is a “%n” specifier for format strings.
‣ Writes the number of bytes already printed into a variable of

the programmer’ choice.
int i;
printf (“foobar%n\n", &i);
printf ("i = %d\n", i);

• i was assigned 6.

Format String Attacks: Data Integrity Vulnerabilities

75

int main(int argc, char *argv[]) {
 if (argc > 1) {
 printf(argv[1]);
 }
}

• What if the user input is “foobar%n”?
‣ Will take the data in rsi, interpreted as an address, and write 6 to

the memory location of that address.

‣Write 16 to a memory location
• What about “foobar%10c%n”?

Format String Attacks: Data Integrity Vulnerabilities

76

• How to write to an arbitrary address?
‣ Put the target address at the right place (register/stack).

• An attacker can possibly update any memory with arbitrary contents.
‣ e.g., overwriting a function pointer and hijacking the control flow

Format String Attacks

77

int main(int argc, char *argv[]) {
 char buf[512];
 fgets(buf, sizeof(buf), stdin);

 printf("The input is:");
 printf(buf);
 return 0;
}

No buffer overflows here

But format string vulnerabilities

• Attackers can possibly
‣ View/change any part of the memory

‣ Execute arbitrary code

Format String Attacks: Fixes

78

• Most of time: quite easy to fix:

int main(int argc, char *argv[]) {
 if (argc > 1) {
 printf(argv[1]);
 }
}

printf(“%s”, argv[1]);

• But not always so obvious
‣ e.g., when the format string is constructed on the fly, we have to

make sure that format string cannot be influenced by input
controllable by the attacker.

printf("hello, %d, %d", 10);

char *format = "hello, %d, %d";
printf(format, 10); no compiler warning

compiler warning

Prevent Format String Vulnerabilities

79

• Limit the ability of adversaries to control the format string
‣ Hard-code format string

‣ Do not use “%n”

‣ Be careful with other specifiers, e.g., %s and sprintf may cause data disclosure.

‣ Compiler support: Match arguments with format string.

- Do not ignore compiler warnings!

- Use extra security checking flags, i.e. “-Wformat*” series of flags

