
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Course Review

2

Definition: Software Security

3

Allow intended use of software and prevent unintended use that
may cause harm

Goal: Prevent information “mishaps”, but don’t stop good things from happening
•Good things include functionality (e.g. legal information access).

• Tradeoff between functionality and security is the key.

Bugs vs. Vulnerabilities

4

Wikipedia: “A software bug is a bug in computer software.”
Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Wikipedia: “Vulnerabilities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabilities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

Fact 1: Software Has Bugs

5

6

Fact 2: Many Bugs Are Exploitable (Causing Damage)

Ransomeware
e.g. WannaCry

Botnet
e.g. Mirai

Spyware
e.g. Pegasus

CIA Security Triad (+1)

7

• Confidentiality: An attacker cannot recover protected data.

• Integrity: An attacker cannot modify protected data.

• Availability: An attacker cannot stop/hinder computation.

Accountability/non-repudiation: Committed changes
cannot be undone (as potential fourth fundamental property).

8

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

9

Fact 3: Software is Incredibly Complex

‣ Software becomes more and more complicated.

‣ Size is measured in terms of millions lines of code.

• Complexity

‣ The Internet makes it possible for attackers to exploit software remotely.
• Connectivity

‣ Programs written by untrusted parties
• Extensibility

Do you trust computations provided by others?

Trusted Computing Base (TCB)

10

A set of hardware, firmware, and software that are critical to the
security of a computer system.
• Bugs in the TCB may jeopardize the system’s security

• E.g., a conventional e-voting machine: voting software + hardware

• In general, a system with a smaller TCB is more trustworthy.

‣ E.g., Proof-Carrying Code removes the compiler outside of the TCB.

• A lot of security research is about how to move components outside
of the TCB (i.e., making the TCB smaller)

• Components outside of the TCB can misbehave without affecting
the security of TCB.

Definition: Threat Model

11

The abilities and resources of the attacker.

• Threat models enable structured reasoning about the attack surface.

• Awareness of entry points (and associated threats) to break into the target.

• Look at systems from an attacker’s perspective:
‣ Decompose application: identify structure

‣ Determine and rank threats

‣ Determine countermeasures and mitigations

https://owasp.org/www-community/Threat_Modeling
Further reading:

https://owasp.org/www-community/Threat_Modeling

Memory Safety Taxonomy

12

• Spatial memory safety bugs
‣ Buffer overflows / out-of-bound memory accesses

- Stack buffer overflows

- Heap buffer overflows

• Temporal memory safety bugs
‣ Use-After-Free (UAF), the most common type

‣ Double free

‣ Invalid free

• Others
‣ Null-pointer dereference

‣ Format string bugs

Null References: The Billion Dollar Mistake - Tony Hoare

https://youtube.com/watch?v=ybrQvs4x0Ps

Spatial Memory Safety Bugs: Buffer Overflows

13

Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

Temporal Memory Safety Bugs

ptr

0x1000

0x10ff

Dereference of ptr is a
use-after-free (UAF) bug.

14

memory
objectFreeing the ptr again is a

double free bug.

15

16

Long-standing Security Threats

17

Morris Worm: infected 10% of Internet, exploiting an OOB bug as one key step1988

Heartbleed: leaking secret data in servers/clients, OOB read in the OpenSSL library2012

2021 NSO Zero-click: remote code execution in iPhone, exploiting an OOB as a key step

Reports from Microsoft, Google, Apple, etc. consistently show that about 65%–70%
of their vulnerabilities are caused by memory safety bugs [1].

[1] Alex Gaynor. What science can tell us about C and C++'s security.

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Exploits Against Memory

18

Stack smashing to hijack the return address: Shellcoding

return-to-libc

Return-oriented Programming

1997

1995

2007

Use-After-Free (UAF)Early 2000

Today Most commonly exploited: Heap buffer overflows and UAF

Why are there so many
memory safety vulnerabilities?

19

Programming in C is Simple

20

~200 pages ~1,000 pages

Architecture of Modern Computers

21

Input Output

Computing

Memory

Programming Correctly in C is (Extremely) Hard

22

Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Pointer: Capability to manipulate memory.
• For C, pointer is usually implemented as a virtual address.

C pointers can do almost arbitrary memory manipulation!
• The correctness is at the discretion of programmers.

Address Space of a C Program

23

• Code

• Data Segment

‣ Initialized data

• BSS Segment

‣ Uninitialized data

• Heap

• Shared libraries

• Stack

• Kernel

What do programs need in memory?

Data Segment

Kernel

Stack

Heap

Text (Code)

BSS Segment

Shared lib

Future Lectures on Memory Safety Defenses

24

• Testing
‣ Memory sanitizing

‣ Fuzzing

• Safe implementations
‣ Pointer-based memory safety

• Memory-safe languages
‣ Safe dialects of C

‣ New systems languages

• Run-time mitigations
‣ Address Space Layout Randomization

‣ Stack canaries and shadow stacks

‣ Control-flow Integrity

‣ Memory Isolation

Life of a C Program: Compilation

25

Front-end Mid-end Backend

• Parsing

• Semantic Analysis

IR Optimized IR

• Intermediate Representation (IR)
Code Generation

• IR Optimizations • Native CodeGen

• Linking

Compilers Come to the Rescue!

26

Front-end Mid-end Backend

• Parsing

• Semantic Analysis

IR Optimized IR

• Intermediate Representation (IR)
Code Generation

• IR Optimizations • Native CodeGen

• Linking

Future Lectures on Memory Safety Defenses

27

• Testing
‣Memory sanitizing
‣ Fuzzing

• Safe implementations
‣Pointer-based memory safety

• Memory-safe languages
‣Safe dialects of C
‣New systems languages

• Run-time mitigations
‣ Address Space Layout Randomization

‣Stack canaries and shadow stacks
‣Control-flow Integrity
‣Memory Isolation

Q & A

28

Address Space Layout Randomization

29

Smashing the Stack: Injecting Shell Code

30

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

rbp

rsp

• This brings up a shell.

• Attackers can execute any command in the shell.

• The shell has the same privilege as the process.

• Good news:
‣ C/C++ stack is not executable by default.

• Bad news:
‣ Code injection works in other cases, e.g. JIT.

Exploiting Existing and Executable Code

31

Stack frame of
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

How about “returning” to some library code?

Exploiting ret2libc on x86-32

32
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

Stack memory layout of a 32-bit vulnerable program

How to get these addresses?

https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

Life of a C Program: Execution

33

Loading

• Initializing memory layout

Execution Termination

• (Optional) Dynamic
linking, e.g.libc

• Environment initialization,
e.g., stack setup

• Setting program counter
(PC) to _start()

• _start() calls
main()

• main() runs the
program

‣ main() returns,
‣ _start() calls exit()
‣ cleanup and shutdown

How to Get Target Addresses?

34

• Examining the binary at run-time
‣ Debugger (GDB/LLDB/etc.)
‣ Systems convention

- On x86-64/Linux, main() usually starts around 0x400000

• In Assignment 1, the program was compiled by

‣ pic: position-independent code (usually for shared libraries)

‣ pie: position-independent executable (for executables)
‣ These options determines whether the code addresses of lucky executable

are fixed or randomized during loading.

Address Space Layout Randomization (ASLR)

35

Introducing randomness into memory regions of a program
• During program initialization, done by the program loader

• Can also happen during static linking time

• Making it hard to figure out attacked target addresses

Address Space Layout Randomization (ASLR)

36

Stack

Heap

Text (Code)

Global Data

Run 1

Stack

Heap

Text (Code)

Global Data

Run 2 Run3

Stack

Heap

Text (Code)

Global Data

Address Space Layout Randomization (ASLR)

37

• When to randomize address space?
- Only at loading time or also at run-time?

- What should the randomization frequency be?

• What to randomize?

• How to randomize?

- Which memory regions to randomize?

- Should we randomize each memory objects?

Memory Mapping of vim

38

Memory Mapping of vim

39

binary

shared
libs

Memory Mapping of vim

40

runtime

linker /
loader

kernel-provided

Address Space Layout Randomization (ASLR)

41

• When to randomize address space?
- Only at loading time or also at run-time?

- What should the randomization frequency be?

• What to randomize?

• How to randomize?

- Which memory regions to randomize?

- Should we randomize each memory objects?

- How many bits to randomize?

Case Study: PaX’s ASLR on x86-32 Systems

42

• When to randomize address space?
- At loading time

• What to randomize?
- Stack

- mmap() area (shared libs + partial heap)

- Main executable

• How to randomize?

Case Study: PaX’s ASLR on x86-32 Systems

43

• Rs: number of randomized bits for the stack

• Rm: number of randomized bits for the mmap() area

• Rx: number of randomized bits for the main executable

• As: number of bits of stack randomness attacked in one attempt

• Am: number of bits of mmap() randomness attacked in one attempt

• Ax: number of bits of main executable randomness attacked in on attempt
• Probability of success within x number of attempts:

- Brute-force attacks: Pb(x) = x / 2n

- Random guess attacks: Pb(x) = 1 - (1 - 2-n)x

where n = Rs-As + Rm-Am + Rx-Ax, i.e., the number of randomized bits to find.

• Randomized bits: number of bits ASLR can vary for a memory region
• Attacked bits: number of bits attackers can bypass (e.g., partial info leak)

Probability of Success

44

Stack

232 - 1

0

• Assume the stack
- 1 byte large

- Can stay anywhere in the address space

• How many randomized bits do we have?

• What’s the probability of success with one guess?

32

1 / 232

Probability of Success

45

Stack

232 - 1

0

• Assume the stack
- 232 bytes (4 GB) large

- Can stay anywhere in the address space

• How many randomized bits do we have?

• What’s the probability of success with one guess?

0

100%

Probability of Success

46

Stack

232 - 1

0

• Assume the stack
- 231 bytes (2G) large

- Can stay anywhere in the address space

• How many randomized bits do we have?

• What’s the probability of success with one guess?
1 / 231

31

Probability of Success

47

Stack

232 - 1

0

• Assume the stack
- 221 bytes (2 MB) large

- Restricted to address 229 to 230 (512 MB)

• How many randomized bits do we have?

• What’s the probability of success with on guess?
1 / 229

229

230

229 to (230 - 221) ~ 29

Considering alignment requirements, we most
likely will only have 25 randomized bits, assuming
a 24 = 16-bytes alignment.

Case Study: PaX’s ASLR on x86-32 Systems

48

• Rs: number of randomized bits for the stack

• Rm: number of randomized bits for the mmap() area

• Rx: number of randomized bits for the main executable

• As: number of bits of stack randomness attacked in one attempt

• Am: number of bits of mmap() randomness attacked in one attempt

• Ax: number of bits of main executable randomness attacked in on attempt
• Probability of success within x number of attempts:

- Brute-force attacks: Pb(x) = x / 2n

- Random guss attacks: Pb(x) = 1 - (1 - 2-n)x

where n = Rs-As + Rm-Am + Rx-Ax, i.e., the number of randomized bits to find.

• Randomized bits: number of bits ASLR can vary for a memory region
• Attacked bits: number of bits attackers can bypass (e.g., partial info leak)

How Effective/Robust is ASLR?

49

Attacking PaX ASLR

50

Attack the Apache http server with ret2libc
• Server takes requests for connections from remote users
‣ Creating a new child process to handle the request

• A stack buffer overflow bug was exploited when handling user input

• ASLR setting:
‣ Starting address of each memory region is randomized

‣ Randomized bits: 16 bits for mmap() and code, and 24 bits for stack

‣ The vulnerable buffer’s address is stored as a local variable on stack

- Kernel maintains a delta_mmap variable as the offset to the start
address of the mmap() region, which is 0x40000000.

• Attacking goal: Invoke system() with argument to launch a shell
Shacham, Hovav, et al. "On the effectiveness of address-space randomization." ACM conference on Computer and Communications Security. 2004.

Exploiting ret2libc on x86-32

51
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

Stack memory layout of a 32-bit vulnerable program

How to get these addresses?

https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

Attacking PaX ASLR

52

Stack frame of
handle_connection’s

caller

low address

Return Address

high address

Caller’s rbp

void handle_connection(...) {
 char buf[64];
 ...
 strcpy(buf, s); // Buffer overflow
 ...
}

buf

• Attacking goal:
‣ Figure out system()’s address
‣ Supply the argument and its

address to system()

Attacking PaX ASLR

53

Stack frame of
handle_connection’s

caller

low address

Return Address

high address

Caller’s rbp

buf

Attacking steps: Brute-force guessing usleep()’s
address with argument 16 seconds.
• If succeeded, server will hang for 16s.

• If failed, connection will terminate instantly.

Address = 0x40000000 + delta_mmap + offset_in_lib

Exploit Step 1: Figure Out delta_mmap

54

Caller’s frame

low address

Return Address

high address

Caller’s rbp

buf

low address

Guessed addr of usleep

high address

0xdeadbeaf

buf

stack smashing

0xdeadbeaf
~16 seconds

Stack before attack Stack after attack

Once succeeded, attackers
would attain delta_mmap.

Exploit Step 2: Injecting system()’s Address

55

Stack frame of
handle_connection’s

caller

low address

Return Address

high address

Caller’s rbp

buf

low address

high address

buf: shell commands

stack smashing

Stack before attack

0xdeadbeaf
pointer to buf

Address of system()

Address of ret

Address of ret.
.
.

Stack after attack

How Hard/Easy is the Attack?

56

• Experimental setup

• 16 bits of randomization for delta_mmap
‣ Only need to try at most 2^16 = 65,536 times

‣ Exploit executed on a 2.4 GHz Pentium 4 Linux machine

‣ Against a PaX ASLR protected Linux running on Athlon 1.8 GHz machine

‣ Running 10 trials

Average Max Min
216 s 810 s 29 s

• Experimental results

How to Improve ASLR?

57

• Use 64-bit systems
- Limited to 36 bits to randomize on Intel x86-64, and 34 bits on Mac M chips

• More frequent randomization during execution
- Randomize each new process

- Randomize memory objects

- Can be complicated and expensive

• Randomization at compile time
- Randomize each function

