CSCI 4907/6545 Software Security
Fall 2025

Instructor: Jie Zhou

Department of Computer Science
George Washington University

GW

Outline

* Review: ASLR
e Protecting Return Addresses
e Control-flow Integrity

Exploiting Existing and Executable Code

high address

How about “returning” to some library code?

Stack frame of
main()

ReturnAddress
_matrsrbp

jle@gwsyssec: ~/courses/csc16545/1lectures

$ ldd demo
linux-vdso.so.1 (0x00007ffffadfdooo)
libc.so.6 => /1ib/x86_64-1inux—gnu/libc.so0.6 (0x00007f48a2c00000)
/1ib64/1d-1inux-x86-64.50.2 (0x00007f48a2efc000)

(gdb) info proc mappings
process 74581
Mapped address spaces:

Start Addr End Addr Size Offset Perms objfile

0x555555554000 0x555555555000 0x1000 0x0 r——p /home/jie/courses/csci6545/lectures/demo

0x555555555000 0x555555556000 0x1000 0x1000 r-xp /home/jie/courses/csci6545/1lectures/demo

0x555555556000 0x555555557000 0x1000 0x2000 r—p /home/jie/courses/csci6545/1lectures/demo

0x555555557000 0x555555558000 0x1000 0x2000 r——p /home/jie/courses/csci6545/lectures/demo

0x555555558000 0x555555559000 0x1000 0x3000 rw-p /home/jie D6 &5 g es /demo
I()\A/ Ei(i(erBESES Ox7ffff7c00000 Ox7ffff7c28000 0x28000 0x0 r—p pr7 L1b/x86_64-1inux—-gnu/libc.so0.6

Ox7ffff7c28000 Ox7ffff7dbdo0d ©0x195000 0x28000 r-xp” /usr/1lib/x86_64-1inux—-gnu/libc.so0.6

Ox7ffff7dbd0oo Ox7ffff7e15000 0x58000 0x1bdooo r- /usr/1ib/x86_64-1inux-gnu/1ibc.s0.6

Ox7ffff7e15000 Ox7ffff7e16000 0x1000 0x215000 —N /usr/lib/x86_64-1inux—gnu/libc.s0.6

Ox7ffff7e16000 Ox7ffff7ela000 0x4000 0x215000 r——p usr/1ib/x86_64-1inux—gnu/libc.s0.6

Ox7ffff7e1la000 Ox7ffff7elco00 0x2000 0x219000 rw-p /u W /X86 64-1inux—gnu/libc.so0.6

Ox7ffff7elc000 Ox7ffff7e29000 0xd00o 0x0 rw-p

Ox7ffff7fa6000 ox7ffff7fa%000 0x3000 0x0 rw-p

Ox7ffff7fbb000o ox7ffff7fbd0ooeo 0x2000 0x0 rw-p

Ox7ffff7fbdo0o Ox7ffff7fc1000 0x4000 0x0 r—p [vvar]

Ox7ffff7fc1000 Ox7ffff7fc3000 0x2000 0x0 r-xp [vdso]

Ox7ffff7fc3000 Ox7ffff7fc5000 0x2000 0x0 r—p /usr/1lib/x86_64-1inux—gnu/ld-1inux-x86-64.s0.2

Ox7ffff7fc5000 Ox7ffff7fef000 0x2a000 0x2000 r-xp /usr/lib/x86_64-1inux—gnu/ld-1inux—x86—64.s0.2

Ox7ffff7fef000 Ox7ffff7ffa000 0xb00o 0x2c000 r—p /usr/1lib/x86_64-1inux—gnu/ld-1inux-x86-64.s0.2

Ox7ffff7ffb000 ox7ffff7ffdooo 0x2000 0x37000 r—p /usr/1lib/x86_64-1inux—gnu/ld-1inux-x86-64.s0.2

Ox7ffff7ffdooo Ox7ffff7fff000 0x2000 0x39000 rw-p /usr/1lib/x86_64-1inux—gnu/ld-1inux-x86-64.s0.2

Ox7ffffffde00o ox7ffffffff00o 0x21000 0x0 rw-p [stack]

Oxffffffffff600000 Oxffffffffff601000 0x1000 0x0 —xp [vsyscall]

Life of a C Program: Execution

o WY —

* [nitializing memory layout

Loading ———> —

Address Space Layout Randomization (ASLR)

* Introducing randomness into memory regions of a program

* During program initialization, done by the program loader
* Can also happen during static linking time
* Making it hard to figure out attacked target addresses

Address Space Layout Randomization (ASLR)

e T B

1 Heap f

Hea
P Heap

| e | [

Run 1 Run 2 Run?3

Address Space Layout Randomization (ASLR)

* When to randomize address space?

- Only at loading time or also at run-time?
- What should the randomization frequency be?

 What to randomize?

- Which memory regions to randomize?

- Should we randomize each memory objects?
* How to randomize?

- How many bits to randomize?

Case Study: PaX’s ASLR on x86-32 Systems

 Randomized bits: number of bits ASLR can vary for a memory region
* Attacked bits: number of bits attackers can bypass (e.g., partial info leak)

* Rs: number of randomized bits for the stack

* Rm: number of randomized bits for the mmap() area

* Rx: number of randomized bits for the main executable

* As: number of bits of stack randomness attacked in one attempt

 Am: number of bits of mmap () randomness attacked in one attempt

* AX: number of bits of main executable randomness attacked in on attempt

* Probabillity of success within X number of attempits:
- Brute-force attacks: Pb(x) = x / 2N

- Random guss attacks: Pb(x) = 1 = (1 — 27N)X

where n = Rs—-As + Rm-Am + RXx-AX, i.e., the number of randomized bits to find.

38

Attacking PaX ASLR

Attack the Apache http server with ret2libc
| B

» Server takes requests for connections from remote users
> Creating a new child process to handle the request

* A stack buffer overflow bug was exploited when handling user input
> The vulnerable buffer’'s address is stored as a local variable on stack

* ASLR setting:

» Starting address of each memory region is randomized

» Randomized bits: 16 bits for mmap () and code, and 24 bits for stack

- Kernel maintains a de lta_mmap variable as the offset to the start
address of the mmap () region, which is 0x40000000.

» Attacking goal: Invoke system() with argument to launch a shell

Shacham, Hovay, et al. "On the effectiveness of address-space randomization." ACM conference on Computer and Communications Security. 2004.

How Hard/Easy is the Attack?

* 16 bits of randomization for delta_mmap
> Only need to try at most 2216 = 65,536 times

* Experimental setup

> Exploit executed on a 2.4 GHz Pentium 4 Linux machine
> Against a PaX ASLR protected Linux running on Athlon 1.8 GHz machine
> Running 10 trials

* Experimental results

Average Max Min
216 s 810s 29s

10

Return Address Corruption

high address

Caller’s frame

Rewritten with attacker-selected address

Caller’s rbp

stack smashing 9 How to detect/prevent stack smashing?
O
buf

low address

11

Stack Canaries

canary in the coal mine (also canary in a coal mine)

an early indicator of potential danger or failurenative brook trout are very much the canary in the coal mine for the health of a stream.

[with reference to the former practice of taking live canaries into coal mines to test for the presence of toxic gases; death of the canary would serve
as an indication that such gases were present]

12

Stack Canaries

* A random value put on the stack to detect stack buffer overflows
* Located close to the return address
* Function checking if the canary changed before using the return address

high address

Caller’s frame

Return Address
Caller’s rbp

Stack Canary

buf

low address

13

Stack Canaries

* A random value put on the stack to detect stack buffer overflows
* Located close to the return address
* Function checking if the canary changed before using the return address

high address

Caller’s frame

Return Address

Callel’s rbp
Stack ary . .
a@taﬁtﬁsmashlng will corrupt the canary.

f

low address

14

Smashing the Stack: Figure out a Nasty Input

void foo(int a, int b) { .
char buffer[12]; Jdemo ? What to input?

gets(buffer);
return;

}

int main() { high address
int X;

foo(1,2); Stack frame of e.d., we can set the ret. aadr.

X = t' main() to the point after “x = 1;”
prin .

return 0;

ReturnAddress Address of the instruction calling printf

} _mahT'sTbp ; <= rpp
=
£ |[€=rsp

low address
15

Smashing the Stack

void foo(int a, int b) {
char buffer[12]:
gets(buffer);
return;

}

int main() {
int Xx;
X = 0;
foo(1,2);
X = 1;
printf(“sd\n",x);
return 0;

clang demo.c -0 demo

Dump of assembler code for function foo:

0x0000000000001150
0x0000000000001151
0x0000000000001154
0x0000000000001158
0x000000000000115b
0x000000000000115e
0x0000000000001162
0x0000000000001164
0x0000000000001169
0x000000000000116d
0x000000000000116e

<+0>:
<+1>:
<+4>:
<+8>:

<+11>:
<+14>:
<+18>:
<+20>:
<+25>:
<+29>:
<+30>:

push
mov
sub
mov
mov
lea
mov
call
add
pop
ret

%rbp

%rsp,%rbp
$0x20,%rsp
%sedi,—-0x4(%rbp)
%esi,—0x8(%rbp)
-0x14(%rbp) ,%rdi
$0x0,%al

0x1040 <gets@plt>
$0x20,%rsp

%rbp

16

Function

0x00001160
0x00001161
0x00001164
0x00001168
0x00001171
0x00001175
0x000011/8
0x0000117b
0x0000117/d
0x00001181
0x00001186
0x0000118f
0x00001193
0x00001196
0x0000119c
0x000011a0

<+0>:
<+1>:
<+4>:
<+8>:

<+17>:
<+21>:
<+24>:
<+27>:
<+29>:
<+33>:
<+38>:
<+47>:
<+51>:
<+54>:
<+60>:
<+04>:

push

mov
sub
mov
mov
mov
mov
X0
lea

call

mov
mov
cmp
jne
add
POP

Frame with Stack Canaries

%srop
%rsp,%rbp

$0x20,%rsp

%Ts: ®X28 %Irax
%Srax, —@x8(%srbop)
oedl,—@x18(srbp)
%esi,—0x1c(%rbp)
%eax,%eax
—0x14(%rbp) ,%rdi
0x1050 <gets@plt>
%Ts:0x28,%rax
—0x8(% r‘bp) y 6N CX
%ICX,%rax

Ox1lla2 <foo+66>
$0x20,%rsp

%rbp

0x00000000000011al1 <+65>:ret

0x00000000000011a2 <+66>:call 0x1030 <

stack_chk_fail@plt>

17

AMDG64/x86-64 ISA

* Segment registers
> CS, SS, ds, Ss, es, fs, gs

18

Segment Registers on AMD64

* A legacy feature from x86-32 for segmentation-based addressing

> CS (code segment)
> DS (data segment)
» SS (stack segment)
> ES (extra segment)
> FS, GS (general-purpose segment)
- Usually used for Thread-local Storage (TLS)

19

Function Frame with A Stack Canary

B el P e
BB T—<t oSS P

08081+ o4t—< i s tri—50x205 s
0x00001168 <+8>: mov %fs:0x28,%rax e Load canary from %fs:0x28 onto the stack

Ox000011/1 <+17>: mov %rax,—@xS(%rbp) > fs: Segment register
Y VL LI LY Y TR NPT > Canary was Initialized during program initialization

4

(o] J (o]

PG TTET—<33> 11— OH858—<ge¥5€P > o | 0ad original canary to a reqister
0x00001186 <+38>: mov %fs:0x28,%rax 9 y 9

0x0000118F <+47>: mov -0x8(%rbp),%rcx * Load canary saved by this function to a register
0x00001193 <+51>: cmp %IrcXx,%rax) Compare the two register
0x00001196 <+54>: jne Ox1la2 <foo+66> - If equal, keep normal execution

- y , []
002002011803 —<dbdnii o — > If unequal, jump to __stack _chk _fail()

5000000000000 0 0] o by
0x00000000000011a2 <+66>:call Ox1030 <__ stack_chk_fail@plt>

20

Use Compilers to Add Stack Canaries

* clang

» —fstack—-protector
- Add stack canaries for functions with a char array or calls to alloca()

» —fstack—-protector-strong

- Add stack canaries for all functions with arrays, alloca, or taking addr of local vars

» —fstack-all
- Add stack canaries for all functions

e gcc has —fstack—protector on by default

21

Weaknesses of Stack Canaries

e Disclosure attacks

> Buffer overread may leak the value of stack canaries.
- Infamous buffer overread example: Heartbleed attack

Caller’s frame

Return Address - Leak from the segment register
Caller's rbp - Leak from the stack
Stack Canary - . .
* Most effective in detecting consecutive stack overtlows
ouf > Cannot detect arbitrary out-of-bound memory corruption

* Only protecting return addresses

> Other security important data may still be corrupted
- e.g., function pointers defined as local variables

22

Root Causes for the Weaknesses of Stack Canaries

* An extra layer of abstraction

23

“All problems in computer science can be
solved by another level of indirection.”

- David Wheeler

24

Software and Hardware Abstractions

+ Abstraction is the act of representing essential features without
iIncluding the background details or explanations.

* Allow encapsulation of ideas without having to go into implementation details.
* Require an explicit definition on how to interoperate between layers

25

Root Causes for the Weaknesses of Stack Canaries

* An extra layer of abstraction
> Which adds complexity to the system

* Key elements for security are located in the “danger zone”
> Canaries on the stack are close to vulnerable buffers

20

Stronger Return Address Protection:
Shadow Stacks

27

Shadow Stack for Return Address Integrity

* A separate stack dedicated to storing a copy of each return address

* A program can use the return address on the shadow stack
> Checking the validity of the original return address
> Directly using the copy on the shadow stack to return

high address

Shadow Stack

Regular Stack

low address

Shadow Stack for Return Address Integrity

* Where to put the shadow stack?
* How to organize the shadow stack?

> 1.e., where exactly to store copies of return addresses?
* How to index the shadow stack?

> |.e., how to find the return addresses on the shadow stack?
high address

Shadow Stack

Regular Stack

low address

Two Types of Shadow Stack

 Compact shadow stack
 Parallel shadow stacks

30

Compact Shadow Stack

* Where to put the shadow stack?
> Usually also in the stack region, but could be in other memory regions.
* How to organize the shadow stack?
> |.e., where exactly to store copies of return addresses a the shadow stack?
- All return addresses are put together

* How to index the shadow stack?”
» Maintain a special shadow stack pointer (ssp) to the top of the shadow stack

31

Compact Shadow Stack

e.g., main() calls foo() and foo() calls bar()

high address

main’s frame
ret. addr. to main

foo’s frame
ret. addr. to foo

bar’s frame

Sp ==

low address

Compact Shadow Stack

e.g., main() calls foo() and foo() calls bar()

Sp ==

ret. addr. to main

ret. addr. to foo

main’s frame

ret. addr. to main

foo’s frame

ret. addr. to foo

bar’s frame

high address

Shadow Stack

low address

* Function prologue
> Save ret addr to shadow stack via ssp
» Update ssp

* Function epilogue

> Load ret addr from shadow stack via ssp

» Use the saved ret addr
» Update ssp

33

How to Maintain the Shadow Stack Pointer

e.g., main() calls foo() and foo() calls bar()

high address
* In a global variable

et addr. to main > Slow (takes two load instructions)
ret. addr. to foo > Multi-threaded issues

* Via segment register

> T5/9s stores the base addr to index ssp
. - Medium speed (takes one load instruction)
ret. addr. to main

foo’s frame * In a dedicated register

ret. addr. to foo > Good performance in general
bar’s frame

main’s frame

Sp ==

low address

34

LLVM’s Implementation of Shadow Stack for AMD64

e Introduced in LLVM-7 for AMD64 and AArcho4

int foo() { Compile with —02 Puifll i
return bar() + 1; — SELLAG] ar
} add SO0x1, %eax
POop 3rcx

retq

35

LLVM’s Implementation of Shadow Stack for AMD64

int foo() {
return bar() + 1;

}

Compile with
—

—fsanitize=shadow—-call-stack

mov
XOr
addq
mov
mov
push
callqg
add
pop
XOr
mov
mov
subqg
cmp
jne
retq

trap:
ud?2

(3rsp),3rl0
5rll,%rll
S0x8,%gs:(%rll)
%gs:(%rll),3rll
3rl0,%gs:(3rll)
3rax

bar

S0x1, %eax

3rCcXx

5rll,%rll
%gs:(%rll),=3rl0
%gs: (3rl1l0),3rl0
S0x8,%gs:(%rll)
3rl0, (3rsp)
trap

360

LLVM’s Implementation of Shadow Stack for AMD64

mov (3rsp),3rl0
int foo() { XOY $rll,srll
return bar() + 1; addqg S0x8,%gs:(%rll)
} mov 3gs:(%rll),srll
mov $rl0,%gs:(3rll)
sesh——o0 0
Compile with eattg—rer——

—

~fsanitize=shadow-call-stack P """
XOr 3rll,3rll
mov ¥gs:(%rll),3rl0
mov 3gs:(%rl0),3rl0
subq S0x8,%gs:(%rll)
cmp 3rl0, (3rsp)
jne trap
reteg—m
trap:
ud?2

Save ret addr to r10

Setr11 (gs’s offset) to O

Increment ssp’s offset by 8 bytes
Load ssp’s offset into r11

Save ret addr to shadow stack

Clear r11

Load ssp’s offset into r10

Load ret addr from shadow stack
Decrement ssp’s offset by 8 bytes
Compare two ret addr

If not equal, jump to trap()

Invalid instruction

37

LLVM’s Implementation of Shadow Stack for AMD64

* Introduced in LLVM-7 for AMD64 and AArch64
* Support for AMD64 was removed since LLVM-9

> High performance overhead
» Security weakness: Subtle Time-Of-Check-Time-Of-Use (TOCTOU)

33

LLVM’s Implementation of Shadow Stack for AMD64

mov (3rsp),%rl0 # Load ret addr into r10

XOr 3rll,%rll 's offset) to O

addq ,%gs:(%rll) # Increment ssp What if the return address was
mov 2gs:(%rll),%rll # Load sspintorit corrupted by another thread
mov 3r10,%gs:(%rll) # Save ret addr to shadow stack before it was loaded and saved
PaSh—a— onto the shadow stack?
eata—htr—

a5 0t %ene—

e

XOr $rll,srll # Clear r11

mov 2gs:(%rll),%rl0 # Loadsspintori0

mov 2gs:(%rl10),%r10 # Load ret addr from shadow stack

subg ,29s:(%rl1l) # Decrement ssp by 8 bytes

cmp 3rl0, (%rsp) # Compare two ret addr

jne # If not equal, jump to trap) What if the return address was

retq\ Corrupted after it passed the
trap: check but before it was popped
ud?2 # Invalid instruction from the regular stack?

39

LLVM’s Implementation of Shadow Stack for AArch64

* Directly use the return address on the shadow stack instead of checking validity
* AArch64 uses a link register (Lr/x30) for return address

> Always storing return address into Lr before storing it onto the stack
> Always loading return address from stack to Lr before using the return address
> Preventing TOCTOU

40

LLVM’s Implementation of Shadow Stack for AArch64

str x30, [x18], #8 # Store Lr to memory pointed by ssp (x18)
and increment ssp

stp x29, x30, [sp, #-16]!

mov Xx29, sp

bl bar

add w0, w0, #1

1dp x29, x30, [sp], #16

1dr x30, [x18, #-8]! # Decrement ssp and load Lr from memory
pointed by ssp

int foo() {
return bar() + 1;

}

ret
With —fsanitize=shadow-call-stack

stp x29, x30, [sp, #-16]! # Store frame pointer (x29) and lr onto the stack

mov x29, sp # Set the frame pointer for the current frame
bl Dbar # Call bar()
add w0, w0, #1 # Add 1 to the return value of bar ()

ldp x29, x30, [sp], #16 # Restore frame pointer and load ret addr into Lr
ret

41

Compact Shadow Stack

* Where to put the shadow stack?
> Usually also in the stack region, but could be in other memory regions.
* How to organize the shadow stack?
> |.e., where exactly to store copies of return addresses a the shadow stack?
- All return addresses are put together

* How to index the shadow stack?”
» Maintain a special shadow stack pointer (ssp) to the top of the shadow stack

42

Parallel Shadow Stack

* Where to put the shadow stack?
> Usually also in the stack region, but could be in other memory regions.

* How to organize the shadow stack?

> 1.e., where exactly to store copies of return addresses a the shadow stack?

- Return addresses on the shadow stack are scattered to match the
layout of the regular stack.

* How to index the shadow stack?
> Use a constant offset from the regular stack pointer

43

Parallel Shadow Stack

e.g., main() calls foo() and foo() calls bar()

Sp ==

ret. addr. to main

ret. addr. to bar

main’s frame

ret. addr. to main

foo’s frame

ret. addr. to foo

bar’s frame

high address

constant
offset

constant
offset

low address

e Shadow stack is of the same size as
the regular stack.

 Constant offset between each ret addr
on the regular and shadow stack

e Use sp + offset to index the ret addr on
the shadow stack
> Prologue: Save ret addr to sp + offset

> Epilogue: Load ret addr from sp + offset

44

Parallel Shadow Stack

 Example of shadow stack updating during function prologue for ARM

mov.w 1p , #0xe@0000 # Move the offset to a reigster
str.w lr , [sp, ip | # Storelrto (sp + offset)

45

Strengths and Weaknesses of Parallel Shadow Stack

» Strengths
> Fast

e \Weaknesses

> Memory consumption overhead is high.
» Hard-coded offset is a security hazard (easily accessible to adversaries).
» Compatibility issues for multi-threaded programs

- Constrained address space layout

46

Reduce the Weaknesses of Parallel Shadow Stack

* Memory consumption overhead is high.
> Use smaller offset

- But less secure
 Hard-coded offset is a security hazard (easily accessible to adversaries).

> Encode the offset in a dedicated register
- Can have different offsets for each thread

- Higher performance penalty
 Compatibility issues for multi-threaded programs.
> Smaller offset also mitigates this issue.

47

Weaknesses of Shadow Stack for Return Addresses

* Increased complexity due to additional abstraction
> Increasing the complexity of the protected software
> Performance and memory overhead

> New security risks
- e.g. race conditions due to x86’s use of stack for return addresses

* Limited scope of protection

* Integrity of shadow stack itself
» Shadow stack protects return addresses, who protects shadow stack”

48

What are essential to a
programming language?

49

Architecture of Modern Computers

50

Essential Components of a Programming Language

* Data types #include <stdio.h>
> Int, char, boolean, etc. void foo() {
. Operators \ printf("Hello from foo\n”);
> arithmetic, move, comparison, etc. |
void bar() {
e Control flow printf("Hello from bar\n");
}

» absolute/conditional transfer, loop

int main(int argc, char xargv[]) {
if (argc > 2) {
foo();
} else {

bar();
I3

return 0;

51

Essential Components of a Programming Language

e Data types
> Int, char, boolean, etc.

* Operatiors
> arithmetic, move, comparison, etc.

e Control flow
» absolute/conditional transfer, loop

52

Control Flow

e Control flow
> absolute/conditional transfer, loop

Attacks often start with misusing data types, and then
misdirecting the control flow to launch malicious computations.

53

Control-flow Integrity is Critical
to Software Security.

54

Control Flow

e Data types
> Int, char, boolean, etc.

» Operatiors
> arithmetic, move, comparison, etc.

* Control flow
> absolute transfer
- Function returns, calls, indirect jumps, goto statements (dangerous and rare today)

55

Control Flow

e Function returns: Backward control flow
e Function calls: Forward control flow

> Direct calls: Call by function name

 Hardcoded function address; usually cannot change
> Indirect calls: Call by function pointers

* Dynamically-computed function address

56

Forward Control Flow

#include <stdio.h>

void foo() {
printf("Hello from foo\n”);
}

void bar() {
printf('Hello from bar\n");
}

int main(int argc, char xargv[]) {
void (xfn_p)() = foo;
if (argc > 2) {
fn_p = bar;
}

fn_p(); Which function to call is computed at run-time.

return 0:

57

Overflowing Heap Critical User Data

/* record type to allocate on heap */

typedef struct chunk {
char inp[64]; /* vulnerable input buffer x/
void (xprocess)(cha /* pointer to function x/

} chunk_t;

.d showlen(char xbuf
oe s tov{eﬁnicsiﬁl’gn‘;b&f§; Overflow the buffer on the heap to set the
} printf("buffer5 read %d chars\n", len); function pointer to an arbitrary address.

int main(int argc, char xargv[]) {
chunk_t xnext = malloc(sizeof(chunk_t));
next—->process showlen;
printf("Enter value: ");
gets(next—>inp);
next—->process(next—>inp) ;
printf("buffer5 done\n");

58

Control-flow Graph (CFG)

* A program representation using graph notations.

* Node: A sequence of instructions without control flow transfers

* Edge: Control flow transfer between nodes

* Usually represent one function, but can also represent a whole program
 Critical to analyzing programs

59

Forward Control Flow

#include <stdio.h>

void foo() {
printf("Hello from foo\n”);
}

void bar() {
printf('Hello from bar\n");
}

int main(int argc, char xargv[]) {
void (xfn_p) () = foo;
if (argc > 2) {
fn_p = bar;
}

fn_p();

return 0:

60

Example of Control-flow Graph (CFG)

void (xfn_p)() = foo;
printf("Hello from foo\n”);

/ foo()’s CFG

fn_p = bar;

\ fn_p(); printf("Hello from bar\n");

return 0;

main()’s CFG bar()’s CFG

o1

How to Enforce Control-flow Integrity

» Compute a CFG

* For indirect control flow transfers, compute their target destinations
> Mostly via compiler or binary rewriting, but possible at run-time

* Before an indirect transfer, check the validity of the destination

* Two CFI policies:
> Label-based and type-based

62

Label-based CFI

* Assign and insert a label (ID) before each indirect transfer destination

* Before executing an indirect transfer, check the destination’s label
> Similar to using stack canaries / shadow stacks

bool 1lt(int x, int y) { sort2(): %I_'I-(M 1t():
return x < y; z ‘ § /,, label 17
} ca1l sort-] call 17,R_ §
bool gt(int x, int y) A | ret 23
return x > y; label 55 m\:,.:": label 23 &T U
} § _.-"':’:\\\\ § \\\ gt () :
~ N\ label 17
sort2(int al[], int b[], int len) call sort _-E ret 5> \\\ §
{ label 554 N
sort(a, len, 1t); § ret 23
sort(b, len, gt);
} ret ..
------------- » Direct forward transfer

— |ndirect forward transfer
<------ Backward transfer

Example of Label-based CFI

Bytes (opcodes) x86 assembly code Comment Bytes (opcodes)

x86 assembly code Comment

FF E1l jmp ecx ; a computed jump instruction 8B 44 24 04

CFl instrumentation

81 39 78 56 34 12 cmp [ecx], 12345678h ; compare data at destination 78 56 34 12
75 13 jne error_label ; 1f not ID value, then fail 8B 44 24 04
8D 49 04 lea ecx, [ecx+4] ; skip ID data at destination

FF E1 jmp ecx ; jump to destination code

A subtle Issue:

mov eax, [esp+4] ; first instruction
; of destination code

CFIl instrumentation

DD 12345678h ; label ID, as data
mov eax, [espt4] ; destination instruction

* Provide a potential ROP gadget incrementing ecx by 4

oz

Issues/Weaknesses of Label-based CFI

* Collision of labels with existing data/code
> Generally harder on x64 than RISC arch such as ARM
-e.g., in ARM, “mov r@, r@” (0x4600) can serve as a unique label
 \Very challenging to compute a precise CFQG
> A practical implementation:
- Use the same label for all function entrance
- Use the same label for all instructions following a call

65

Type-based CFl

* Use function signature (types of return value and args) as the target identifier

* Each signature is assigned a unique type ID
> e.0., “vold foo()”and “int bar()” will have different type IDs.

* Before an indirect call, check destination’s type ID against a predetermined ID

60

Type-based CFl Implementation: Option 1

* Maintain a mapping table (e.g. hash table)

> Key: function address

> Value: function’s type ID

> The table is stored in a read-only memory region.
 Compiler generates a type ID using the function pointer’s signature/type.
* For an indirect call

> Query the mapping table to get the current function pointer’s type ID

> Compare this ID with the pregenerated type ID

67

Type-based CFl Implementation: Option 2

 Compiler computes the type ID of each function

e Insert the ID as a label at the entrance of function
e Do a label-based CFl check

63

Weaknesses of Type-based CFI

* Needs source code or compiller IR; cannot do binary rewriting
* Only works for indirection function calls but not returns
* Allows indirect calls to a group of functions

> What if we have “int myFunc(const char xstr)”, which has the
same type ID as “int system(const char xcommand)”?

69

Effectiveness of CFlI

* Average target set size (also known as size of average equivalent classes)
> Compute the number of possible call targets

* Average Indirect-target Reduction (AlIR)
> How much a CFl mechanism reduces the number of valid targets
* Open problem: how effective are these metrics?

> Not all functions are equal!

70

Use Compilers to Enforce CFI

* clang
> Mostly type-based

> Multiple options (7 in Clang-22) to control protection granularity

> Not on by default
* gccC

> Currently requires special Intel hardware; no pure software support

/1

Fundamental Weaknesses of CFlI

* Performance and code size overhead
* Cannot be 100% accurate
 Backward CFl (i.e., protecting return addresses) is critical.
* An extra lay of complexity
> May need support from OS

* Limited protection scope
> Does not prevent data-only attacks

» Needs WAX/DEP

(2

