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• Review: ASLR 
• Protecting Return Addresses 
• Control-flow Integrity



Exploiting Existing and Executable Code
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Stack frame of 
main()

low address

Return Address

high address

main’s rbp

execve(“/bin/sh”)

How about “returning” to some library code?



Life of a C Program: Execution
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Loading

• Initializing memory layout

Execution Termination

• (Optional) Dynamic 
linking, e.g.libc

• Environment initialization, 
e.g., stack setup

• Setting program counter 
(PC) to _start()

• _start() calls 
main()

• main() runs the 
program

‣ main() returns,
‣ _start() calls exit()
‣ cleanup and shutdown



Address Space Layout Randomization (ASLR)
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Introducing randomness into memory regions of a program
• During program initialization, done by the program loader

• Can also happen during static linking time

• Making it hard to figure out attacked target addresses



Address Space Layout Randomization (ASLR)
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Address Space Layout Randomization (ASLR)
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• When to randomize address space?
- Only at loading time or also at run-time?

- What should the randomization frequency be?

• What to randomize?

• How to randomize?

- Which memory regions to randomize?

- Should we randomize each memory objects?

- How many bits to randomize?



Case Study: PaX’s ASLR on x86-32 Systems
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• Rs: number of randomized bits for the stack

• Rm: number of randomized bits for the mmap() area

• Rx: number of randomized bits for the main executable

• As: number of bits of stack randomness attacked in one attempt

• Am: number of bits of mmap() randomness attacked in one attempt

• Ax: number of bits of main executable randomness attacked in on attempt
• Probability of success within x number of attempts:

- Brute-force attacks: Pb(x) = x / 2n 

- Random guss attacks: Pb(x) = 1 - (1 - 2-n)x

where n = Rs-As + Rm-Am + Rx-Ax, i.e., the number of randomized bits to find.

• Randomized bits: number of bits ASLR can vary for a memory region
• Attacked bits: number of bits attackers can bypass (e.g., partial info leak)



Attacking PaX ASLR
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Attack the Apache http server with ret2libc 
• Server takes requests for connections from remote users
‣ Creating a new child process to handle the request

• A stack buffer overflow bug was exploited when handling user input

• ASLR setting:
‣ Starting address of each memory region is randomized

‣ Randomized bits: 16 bits for mmap() and code, and 24 bits for stack

‣ The vulnerable buffer’s address is stored as a local variable on stack

- Kernel maintains a delta_mmap variable as the offset to the start 
address of the mmap() region, which is 0x40000000.

• Attacking goal: Invoke system() with argument to launch a shell
Shacham, Hovav, et al. "On the effectiveness of address-space randomization." ACM conference on Computer and Communications Security. 2004.



How Hard/Easy is the Attack?
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• Experimental setup

• 16 bits of randomization for delta_mmap
‣ Only need to try at most 2^16 = 65,536 times

‣ Exploit executed on a 2.4 GHz Pentium 4 Linux machine

‣ Against a PaX ASLR protected Linux running on Athlon 1.8 GHz machine

‣ Running 10 trials

Average Max Min
216 s 810 s 29 s

• Experimental results



Return Address Corruption
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Caller’s frame

low address

Return Address

high address

Caller’s rbp

buf

stack smashing

Rewritten with attacker-selected address

How to detect/prevent stack smashing?



Stack Canaries

12



Stack Canaries
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A random value put on the stack to detect stack buffer overflows
• Located close to the return address

• Function checking if the canary changed before using the return address

Caller’s frame

low address

Return Address

high address

Caller’s rbp

buf

Stack Canary



Caller’s frame

low address

Return Address

high address

Caller’s rbp

buf

Stack Canary

Stack Canaries
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A random value put on the stack to detect stack buffer overflows
• Located close to the return address

• Function checking if the canary changed before using the return address

Stack smashing will corrupt the canary.



                                                                                    
void foo(int a, int b) {                                                            
     char buffer[12];                                                               
     gets(buffer);                                                                  
     return;                                                                        
}                                                                                   
                                                                                    
int main() {                                                                       
     int x;                                                                         
     x = 0;                                                                         
     foo(1,2);                                                                 
     x = 1;                                                                         
     printf(“%d\n",x); 
     return 0;                                                       
} 

Smashing the Stack: Figure out a Nasty Input

15

./demo

Stack frame of 
main()

low address

Return Address

high address

rbp

rsp

main’s rbp

F

F
F
…
F

What to input?

e.g., we can set the ret. addr. 
to the point after “x = 1;”

Address of the instruction calling printf



Smashing the Stack
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void foo(int a, int b) {                                                            
     char buffer[12];                                                               
     gets(buffer);                                                                  
     return;                                                                        
}                                                                                   
                                                                                    
int main() {                                                                       
     int x;                                                                         
     x = 0;                                                                         
     foo(1,2);                                                                 
     x = 1;                                                                         
     printf(“%d\n",x); 
     return 0;                                                       
} 

clang demo.c -o demo



Function Frame with Stack Canaries
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   0x00001160 <+0>:   push   %rbp 
   0x00001161 <+1>:   mov    %rsp,%rbp 
   0x00001164 <+4>:   sub    $0x20,%rsp 
   0x00001168 <+8>:   mov    %fs:0x28,%rax 
   0x00001171 <+17>:  mov    %rax,-0x8(%rbp) 
   0x00001175 <+21>:  mov    %edi,-0x18(%rbp) 
   0x00001178 <+24>:  mov    %esi,-0x1c(%rbp) 
   0x0000117b <+27>:  xor    %eax,%eax 
   0x0000117d <+29>:  lea    -0x14(%rbp),%rdi 
   0x00001181 <+33>:  call   0x1050 <gets@plt> 
   0x00001186 <+38>:  mov    %fs:0x28,%rax 
   0x0000118f <+47>:  mov    -0x8(%rbp),%rcx 
   0x00001193 <+51>:  cmp    %rcx,%rax 
   0x00001196 <+54>:  jne    0x11a2 <foo+66> 
   0x0000119c <+60>:  add    $0x20,%rsp 
   0x000011a0 <+64>:  pop    %rbp 
   0x00000000000011a1 <+65>: ret     
   0x00000000000011a2 <+66>: call   0x1030 <__stack_chk_fail@plt>



AMD64/x86-64 ISA
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• General-purpose registers
‣ rax–rdx, rsi, rdi, r8–r15

‣ rbp, rsp

• Program counter
‣ rip 

• Segment registers

• Control registers
‣ cs, ss, ds, ss, es, fs, gs

‣ cr0, cr2, cr3, cr4



Segment Registers on AMD64
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• A legacy feature from x86-32 for segmentation-based addressing
‣ CS (code segment)

‣ DS (data segment)

‣ SS (stack segment)

‣ ES (extra segment)

‣ FS, GS (general-purpose segment)

- Usually used for Thread-local Storage (TLS)



Function Frame with A Stack Canary

20

   0x00001160 <+0>:   push   %rbp 
   0x00001161 <+1>:   mov    %rsp,%rbp 
   0x00001164 <+4>:   sub    $0x20,%rsp 
   0x00001168 <+8>:   mov    %fs:0x28,%rax 
   0x00001171 <+17>:  mov    %rax,-0x8(%rbp) 
   0x00001175 <+21>:  mov    %edi,-0x18(%rbp) 
   0x00001178 <+24>:  mov    %esi,-0x1c(%rbp) 
   0x0000117b <+27>:  xor    %eax,%eax 
   0x0000117d <+29>:  lea    -0x14(%rbp),%rdi 
   0x00001181 <+33>:  call   0x1050 <gets@plt> 
   0x00001186 <+38>:  mov    %fs:0x28,%rax 
   0x0000118f <+47>:  mov    -0x8(%rbp),%rcx 
   0x00001193 <+51>:  cmp    %rcx,%rax 
   0x00001196 <+54>:  jne    0x11a2 <foo+66> 
   0x0000119c <+60>:  add    $0x20,%rsp 
   0x000011a0 <+64>:  pop    %rbp 
   0x00000000000011a1 <+65>: ret     
   0x00000000000011a2 <+66>: call   0x1030 <__stack_chk_fail@plt>

• Load original canary to a register

• Load canary saved by this function to a register

• Compare the two register 
‣ If equal, keep normal execution

‣ If unequal, jump to __stack_chk_fail()

• Load canary from %fs:0x28 onto the stack
‣ fs: segment register

‣ Canary was initialized during program initialization



Use Compilers to Add Stack Canaries
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• clang

- Add stack canaries for functions with a char array or calls to alloca()
‣ -fstack-protector

‣ -fstack-protector-strong
- Add stack canaries for all functions with arrays, alloca, or taking addr of local vars

‣ -fstack-all
- Add stack canaries for all functions

• gcc has -fstack-protector on by default



Weaknesses of Stack Canaries
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• Disclosure attacks
‣ Buffer overread may leak the value of stack canaries.

- Infamous buffer overread example: Heartbleed attack

- Leak from the segment register

- Leak from the stack

• Most effective in detecting consecutive stack overflows
‣ Cannot detect arbitrary out-of-bound memory corruption

• Only protecting return addresses
‣ Other security important data may still be corrupted

- e.g., function pointers defined as local variables

Caller’s frame

Return Address
Caller’s rbp

buf

Stack Canary



Root Causes for the Weaknesses of Stack Canaries
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• An extra layer of abstraction
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“All problems in computer science can be 
solved by another level of indirection.”

-  David Wheeler



Software and Hardware Abstractions
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Abstraction is the act of representing essential features without 
including the background details or explanations.
• Allow encapsulation of ideas without having to go into implementation details.

• Require an explicit definition on how to interoperate between layers

• In software, an API abstracts the underlying implementation by defining 
how a library can be used.

• In hardware, an ISA abstracts the underlying implementation of the instructions 
into logic and state.

• In operating systems, the system call interface abstracts low level implementations.



Root Causes for the Weaknesses of Stack Canaries
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• An extra layer of abstraction
‣ Which adds complexity to the system

• Key elements for security are located in the “danger zone”
‣ Canaries on the stack are close to vulnerable buffers



Stronger Return Address Protection: 
Shadow Stacks
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Shadow Stack for Return Address Integrity
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A separate stack dedicated to storing a copy of each return address
• A program can use the return address on the shadow stack
‣ Checking the validity of the original return address

‣ Directly using the copy on the shadow stack to return

Regular Stack

low address

high address

Shadow Stack



Shadow Stack for Return Address Integrity
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• Where to put the shadow stack?

‣ i.e., where exactly to store copies of return addresses?
• How to index the shadow stack? 
‣ i.e., how to find the return addresses on the shadow stack?

• How to organize the shadow stack?

Regular Stack

low address

high address

Shadow Stack



Two Types of Shadow Stack
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• Compact shadow stack

• Parallel shadow stacks



Compact Shadow Stack
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• Where to put the shadow stack?

‣ i.e., where exactly to store copies of return addresses a the shadow stack?

• How to index the shadow stack? 
‣ Maintain a special shadow stack pointer (ssp) to the top of the shadow stack

• How to organize the shadow stack?
‣ Usually also in the stack region, but could be in other memory regions.

- All return addresses are put together



Compact Shadow Stack
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low address

high address

e.g., main() calls foo() and foo() calls bar()

ret. addr. to main
main’s frame

ret. addr. to foo
foo’s frame

bar’s frame
sp



Compact Shadow Stack
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low address

high address

ret. addr. to main
main’s frame

ret. addr. to foo
foo’s frame

bar’s frame

Shadow Stackret. addr. to foo
ret. addr. to main

ssp

sp

• Function prologue
‣ Save ret addr to shadow stack via ssp

‣ Update ssp

• Function epilogue
‣ Load ret addr from shadow stack via ssp

‣ Use the saved ret addr

‣ Update ssp

e.g., main() calls foo() and foo() calls bar()



How to Maintain the Shadow Stack Pointer
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low address

high address

ret. addr. to main
main’s frame

ret. addr. to foo
foo’s frame

bar’s frame

ret. addr. to foo
ret. addr. to main

ssp

sp

• In a global variable
‣ Slow (takes two load instructions)

‣ Multi-threaded issues

• Via segment register
‣ fs/gs stores the base addr to index ssp

- Medium speed (takes one load instruction)
• In a dedicated register
‣ Good performance in general

e.g., main() calls foo() and foo() calls bar()



LLVM’s Implementation of Shadow Stack for AMD64
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• Introduced in LLVM-7 for AMD64 and AArch64

int foo() {
  return bar() + 1;
}

push   %rax
callq  bar
add    $0x1,%eax
pop    %rcx
retq

Compile with -O2



LLVM’s Implementation of Shadow Stack for AMD64
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int foo() {
  return bar() + 1;
}

mov    (%rsp),%r10
xor    %r11,%r11
addq   $0x8,%gs:(%r11)
mov    %gs:(%r11),%r11
mov    %r10,%gs:(%r11)
push   %rax
callq  bar
add    $0x1,%eax
pop    %rcx
xor    %r11,%r11
mov    %gs:(%r11),%r10
mov    %gs:(%r10),%r10
subq   $0x8,%gs:(%r11)
cmp    %r10,(%rsp)
jne    trap
retq

trap:
ud2

-fsanitize=shadow-call-stack

Compile with



LLVM’s Implementation of Shadow Stack for AMD64
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int foo() {
  return bar() + 1;
}

mov    (%rsp),%r10      # Save ret addr to r10
xor    %r11,%r11        # Set r11 (gs’s offset) to 0
addq   $0x8,%gs:(%r11)  # Increment ssp’s offset by 8 bytes
mov    %gs:(%r11),%r11  # Load ssp’s offset into r11
mov    %r10,%gs:(%r11)  # Save ret addr to shadow stack
push   %rax
callq  bar
add    $0x1,%eax
pop    %rcx
xor    %r11,%r11        # Clear r11
mov    %gs:(%r11),%r10  # Load ssp’s offset into r10
mov    %gs:(%r10),%r10  # Load ret addr from shadow stack
subq   $0x8,%gs:(%r11)  # Decrement ssp’s offset by 8 bytes
cmp    %r10,(%rsp)      # Compare two ret addr
jne    trap             # If not equal, jump to trap() 
retq

trap:
ud2                     # Invalid instruction

Compile with

-fsanitize=shadow-call-stack



LLVM’s Implementation of Shadow Stack for AMD64
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• Introduced in LLVM-7 for AMD64 and AArch64

• Support for AMD64 was removed since LLVM-9
‣ High performance overhead

‣ Security weakness: Subtle Time-Of-Check-Time-Of-Use (TOCTOU)



LLVM’s Implementation of Shadow Stack for AMD64
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mov    (%rsp),%r10      # Load ret addr into r10
xor    %r11,%r11        # Set r11 (gs’s offset) to 0
addq   $0x8,%gs:(%r11)  # Increment ssp by 8 bytes
mov    %gs:(%r11),%r11  # Load ssp into r11
mov    %r10,%gs:(%r11)  # Save ret addr to shadow stack
push   %rax
callq  bar
add    $0x1,%eax
pop    %rcx
xor    %r11,%r11        # Clear r11
mov    %gs:(%r11),%r10  # Load ssp into r10
mov    %gs:(%r10),%r10  # Load ret addr from shadow stack
subq   $0x8,%gs:(%r11)  # Decrement ssp by 8 bytes
cmp    %r10,(%rsp)      # Compare two ret addr
jne    trap             # If not equal, jump to trap()
retq

trap:
ud2                     # Invalid instruction

What if the return address was 
corrupted by another thread 
before it was loaded and saved 
onto the shadow stack?

What if the return address was 
corrupted after it passed the 
check but before it was popped 
from the regular stack?



LLVM’s Implementation of Shadow Stack for AArch64
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• Directly use the return address on the shadow stack instead of checking validity

• AArch64 uses a link register (lr/x30) for return address
‣ Always storing return address into lr before storing it onto the stack

‣ Always loading return address from stack to lr before using the return address

‣ Preventing TOCTOU



LLVM’s Implementation of Shadow Stack for AArch64
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int foo() {
  return bar() + 1;
}

stp  x29, x30, [sp, #-16]! # Store frame pointer (x29) and lr onto the stack
mov  x29, sp               # Set the frame pointer for the current frame
bl   bar                   # Call bar() 
add  w0, w0, #1            # Add 1 to the return value of bar() 
ldp  x29, x30, [sp], #16   # Restore frame pointer and load ret addr into lr 
ret 

str  x30, [x18], #8   # Store lr to memory pointed by ssp (x18)

                  # and increment ssp

stp  x29, x30, [sp, #-16]!
mov  x29, sp
bl   bar
add  w0, w0, #1
ldp  x29, x30, [sp], #16
ldr  x30, [x18, #-8]! # Decrement ssp and load lr from memory
                      # pointed by ssp
ret

With -fsanitize=shadow-call-stack



Compact Shadow Stack
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• Where to put the shadow stack?

‣ i.e., where exactly to store copies of return addresses a the shadow stack?

• How to index the shadow stack? 
‣ Maintain a special shadow stack pointer (ssp) to the top of the shadow stack

• How to organize the shadow stack?
‣ Usually also in the stack region, but could be in other memory regions.

- All return addresses are put together



Parallel Shadow Stack
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• Where to put the shadow stack?

‣ i.e., where exactly to store copies of return addresses a the shadow stack?

• How to index the shadow stack? 
‣ Use a constant offset from the regular stack pointer

• How to organize the shadow stack?
‣ Usually also in the stack region, but could be in other memory regions.

- Return addresses on the shadow stack are scattered to match the 
layout of the regular stack.



Parallel Shadow Stack
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low address

high address

ret. addr. to main
main’s frame

ret. addr. to foo
foo’s frame

bar’s frame
sp

ret. addr. to bar

ret. addr. to main

constant 
offset

constant 
offset

• Shadow stack is of the same size as 
the regular stack.

• Constant offset between each ret addr 
on the regular and shadow stack 

• Use sp + offset to index the ret addr on 
the shadow stack
‣ Prologue: Save ret addr to sp + offset

‣ Epilogue: Load ret addr from sp + offset

e.g., main() calls foo() and foo() calls bar()



Parallel Shadow Stack
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• Example of shadow stack updating during function prologue for ARM

mov.w ip , #0xe00000  # Move the offset to a reigster 
str.w lr , [sp, ip ]  #  Store lr to (sp + offset)



Strengths and Weaknesses of Parallel Shadow Stack
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‣ Memory consumption overhead is high.

‣ Hard-coded offset is a security hazard (easily accessible to adversaries).

‣ Compatibility issues for multi-threaded programs

- Constrained address space layout

• Weaknesses

• Strengths
‣ Fast



Reduce the Weaknesses of Parallel Shadow Stack
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• Memory consumption overhead is high.
‣ Use smaller offset

• Hard-coded offset is a security hazard (easily accessible to adversaries).

• Compatibility issues for multi-threaded programs.

‣ Encode the offset in a dedicated register

‣ Smaller offset also mitigates this issue.

- Can have different offsets for each thread

- Higher performance penalty

- But less secure



Weaknesses of Shadow Stack for Return Addresses
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• Integrity of shadow stack itself
‣ Shadow stack protects return addresses, who protects shadow stack?

• Increased complexity due to additional abstraction
‣ Increasing the complexity of the protected software

‣ Performance and memory overhead

‣ New security risks

• Limited scope of protection
- e.g. race conditions due to x86’s use of stack for return addresses



What are essential to a 
programming language?
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Architecture of Modern Computers

50

Input Output

Computing

Memory



Essential Components of a Programming Language
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#include <stdio.h>                                                                  
                                                                                    
void foo() {                                                                        
    printf("Hello from foo\n”);                                                     
}                                                                                   
                                                                                    
void bar() {                                                                        
    printf("Hello from bar\n");                                                     
}                                                                                   
                                                                                    
int main(int argc, char *argv[]) {                                                  
    if (argc > 2) {                                                                 
        foo();                                                                      
    } else {                                                                        
        bar();                                                                      
    }                                                                               
                                                                                    
    return 0;                                                                       
}

• Data types

‣ int, char, boolean, etc.


• Operators

‣ arithmetic, move, comparison, etc.


• Control flow

‣ absolute/conditional transfer, loop



Essential Components of a Programming Language
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• Data types

‣ int, char, boolean, etc.


• Operatiors

‣ arithmetic, move, comparison, etc.


• Control flow

‣ absolute/conditional transfer, loop



Control Flow
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Attacks often start with misusing data types, and then 
misdirecting the control flow to launch malicious computations.

• Data types

‣ int, char, boolean, etc.


• Operatiors

‣ arithmetic, move, comparison, etc.


• Control flow

‣ absolute/conditional transfer, loop



Control-flow Integrity is Critical 
to Software Security.

54



Control Flow
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• Data types

‣ int, char, boolean, etc.


• Operatiors

‣ arithmetic, move, comparison, etc.


• Control flow

‣ absolute/conditional transfer, loop

- Function returns, calls, indirect jumps, goto statements (dangerous and rare today)



Control Flow
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• Function returns: Backward control flow

• Function calls: Forward control flow
‣ Direct calls: Call by function name

• Hardcoded function address; usually cannot change


‣ Indirect calls: Call by function pointers

• Dynamically-computed function address



Forward Control Flow
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#include <stdio.h>                                                                  
                                                                                    
void foo() {                                                                        
    printf("Hello from foo\n”);                                                     
}                                                                                   
                                                                                    
void bar() {                                                                        
    printf("Hello from bar\n");                                                     
}                                                                                   
                                                                                    
int main(int argc, char *argv[]) {                                                  
    void (*fn_p)() = foo;                                                           
    if (argc > 2) {                                                                 
        fn_p = bar;                                                                 
    }                                                                               
                                                                                    
    fn_p();                                                                               

                                                                                    
    return 0;                                                                       
}

Which function to call is computed at run-time.



Overflowing Heap Critical User Data
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/* record type to allocate on heap */                                               
typedef struct chunk {                                                              
    char inp[64];               /* vulnerable input buffer */                      
    void (*process)(char *);    /* pointer to function */                           
} chunk_t;                                                                          
                                                                                    
void showlen(char *buf) {                                                           
    int len = strlen(buf);                                                     
    printf("buffer5 read %d chars\n", len);                                         
}                                                                                   
                                                                                    
int main(int argc, char *argv[]) {                                                  
    chunk_t *next = malloc(sizeof(chunk_t));                                                                                                               
    next->process = showlen;                                                        
    printf("Enter value: ");                                                        
    gets(next->inp);                                                                
    next->process(next->inp);                                                       
    printf("buffer5 done\n");                                                       
}  

Overflow the buffer on the heap to set the

function pointer to an arbitrary address.



Control-flow Graph (CFG)
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A program representation using graph notations.
• Node: A sequence of instructions without control flow transfers

• Edge: Control flow transfer between nodes

• Usually represent one function, but can also represent a whole program

• Critical to analyzing programs



Forward Control Flow

60

#include <stdio.h>                                                                  
                                                                                    
void foo() {                                                                        
    printf("Hello from foo\n”);                                                     
}                                                                                   
                                                                                    
void bar() {                                                                        
    printf("Hello from bar\n");                                                     
}                                                                                   
                                                                                    
int main(int argc, char *argv[]) {                                                  
    void (*fn_p)() = foo;                                                           
    if (argc > 2) {                                                                 
        fn_p = bar;                                                                 
    }                                                                               
                                                                                    
    fn_p();                                                                               

                                                                                    
    return 0;                                                                       
}



Example of Control-flow Graph (CFG)
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printf("Hello from foo\n”);                                                    

printf("Hello from bar\n");                                                    

void (*fn_p)() = foo;

fn_p = bar;

fn_p(); 
return 0;

main()’s CFG bar()’s CFG

foo()’s CFG



How to Enforce Control-flow Integrity 
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• Compute a CFG

• For indirect control flow transfers, compute their target destinations

‣ Mostly via compiler or binary rewriting, but possible at run-time 


• Before an indirect transfer, check the validity of the destination

• Two CFI policies:

‣ Label-based and type-based



Label-based CFI

63

• Assign and insert a label (ID) before each indirect transfer destination

• Before executing an indirect transfer, check the destination’s label

Indirect forward transfer
Direct forward transfer

Backward transfer

‣ Similar to using stack canaries / shadow stacks



Example of Label-based CFI
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CFI instrumentation CFI instrumentation

A subtle issue:
• Provide a potential ROP gadget incrementing ecx by 4



Issues/Weaknesses of Label-based CFI

65

• Collision of labels with existing data/code

‣ Generally harder on x64 than RISC arch such as ARM


- e.g., in ARM, “mov r0, r0” (0x4600) can serve as a unique label

‣ A practical implementation:
- Use the same label for all function entrance 

- Use the same label for all instructions following a call

• Very challenging to compute a precise CFG



Type-based CFI
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• Use function signature (types of return value and args) as the target identifier

• Each signature is assigned a unique type ID

‣ e.g., “void foo()” and “int bar()” will have different type IDs.


• Before an indirect call, check destination’s type ID against a predetermined ID



Type-based CFI Implementation: Option 1
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• Maintain a mapping table (e.g. hash table)

‣ Key: function address

‣ Value: function’s type ID

‣ The table is stored in a read-only memory region.


• Compiler generates a type ID using the function pointer’s signature/type.

• For an indirect call

‣ Query the mapping table to get the current function pointer’s type ID

‣ Compare this ID with the pregenerated type ID 



Type-based CFI Implementation: Option 2
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• Compiler computes the type ID of each function

• Insert the ID as a label at the entrance of function

• Do a label-based CFI check



Weaknesses of Type-based CFI
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• Needs source code or compiler IR; cannot do binary rewriting

• Only works for indirection function calls but not returns

• Allows indirect calls to a group of functions
‣ What if we have “int myFunc(const char *str)”, which has the 

same type ID as “int system(const char *command)”?



Effectiveness of CFI
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• Average target set size (also known as size of average equivalent classes)
‣ Compute the number of possible call targets

• Average Indirect-target Reduction (AIR)
‣ How much a CFI mechanism reduces the number of valid targets

• Open problem: how effective are these metrics?
‣ Not all functions are equal!



Use Compilers to Enforce CFI
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• clang
‣ Mostly type-based
‣ Multiple options (7 in Clang-22) to control protection granularity

• gcc
‣ Not on by default

‣ Currently requires special Intel hardware; no pure software support



Fundamental Weaknesses of CFI
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• Performance and code size overhead

• Cannot be 100% accurate

• Backward CFI (i.e., protecting return addresses) is critical.

• An extra lay of complexity

‣ May need support from OS


• Limited protection scope 

‣ Does not prevent data-only attacks

‣ Needs W^X/DEP


