CSCI 4907/6545 Software Security
Fall 2025

Instructor: Jie Zhou

Department of Computer Science
George Washington University

GW

Slides materials are partially credited to Gang Tan of PSU.

Outline

* Review: Control-flow Integrity
¢ Testing to find software bugs
* Fuzz testing (Fuzzing)

What are essential to a
programming language?

Essential Components of a Programming Language

e Data types
> Int, char, boolean, etc.

e Operatiors
> arithmetic, move, comparison, etc.

e Control flow
> absolute/conditional transfer, loop

Attacks often start with misusing data types, and then
misdirecting the control flow to launch malicious computations.

Control Flow

e Data types

> Int, char, boolean, etc.
» Operatiors

> arithmetic, move, comparison, etc.
e Control flow

> absolute transfer
- Function returns, calls, indirect jumps, goto statements (dangerous and rare today)

Return Address Corruption

high address

Caller’s frame

Rewritten with attacker-selected address

Caller’s rbp

stack smashing 9 How to detect/prevent stack smashing?
O
buf

low address

Stack Canaries

* A random value put on the stack to detect stack buffer overflows
* Located close to the return address
* Function checking if the canary changed before using the return address

high address

Caller’s frame

Return Address

Callel’s rbp
Stack ary . .
a@taﬁtﬁsmashlng will corrupt the canary.

f

low address

Use Compilers to Add Stack Canaries

* clang

» —fstack—-protector
- Add stack canaries for functions with a char array or calls to alloca()

» —fstack—-protector-strong

- Add stack canaries for all functions with arrays, alloca, or taking addr of local vars

» —fstack-all
- Add stack canaries for all functions

e gcc has —fstack—protector on by default

Function Frame with A Stack Canary

B el P e
BB T—<t oSS P

08081+ o4t—< i s tri—50x205 s
0x00001168 <+8>: mov %fs:0x28,%rax e Load canary from %fs:0x28 onto the stack

Ox000011/1 <+17>: mov %rax,—@xS(%rbp) > fs: Segment register
Y VL LI LY Y TR NPT > Canary was Initialized during program initialization

4

(o] J (o]

PG TTET—<33> 11— OH858—<ge¥5€P > o | 0ad original canary to a reqister
0x00001186 <+38>: mov %fs:0x28,%rax 9 y 9

0x0000118F <+47>: mov -0x8(%rbp),%rcx * Load canary saved by this function to a register
0x00001193 <+51>: cmp %IrcXx,%rax) Compare the two register
0x00001196 <+54>: jne Ox1la2 <foo+66> - If equal, keep normal execution

- y , []
002002011803 —<dbdnii o — > If unequal, jump to __stack _chk _fail()

5000000000000 0 0] o by
0x00000000000011a2 <+66>:call Ox1030 <__ stack_chk_fail@plt>

Weaknesses of Stack Canaries

e Disclosure attacks

> Buffer overread may leak the value of stack canaries.
- Infamous buffer overread example: Heartbleed attack

Caller’s frame

Return Address - Leak from the segment register
Caller's rbp - Leak from the stack
Stack Canary - . .
* Most effective in detecting consecutive stack overtlows
ouf > Cannot detect arbitrary out-of-bound memory corruption

* Only protecting return addresses

> Other security important data may still be corrupted
- e.g., function pointers defined as local variables

10

Shadow Stack for Return Address Integrity

* A separate stack dedicated to storing a copy of each return address

* A program can use the return address on the shadow stack
> Checking the validity of the original return address
> Directly using the copy on the shadow stack to return

high address

Shadow Stack

Regular Stack

low address

Compact Shadow Stack

* Where to put the shadow stack?
> Usually also in the stack region, but could be in other memory regions.
* How to organize the shadow stack?
> |.e., where exactly to store copies of return addresses a the shadow stack?
- All return addresses are put together

* How to index the shadow stack?”
» Maintain a special shadow stack pointer (ssp) to the top of the shadow stack

12

Compact Shadow Stack

e.g., main() calls foo() and foo() calls bar()

Sp ==

ret. addr. to main

ret. addr. to foo

main’s frame

ret. addr. to main

foo’s frame

ret. addr. to foo

bar’s frame

high address

Shadow Stack

low address

* Function prologue
> Save ret addr to shadow stack via ssp
» Update ssp

* Function epilogue

> Load ret addr from shadow stack via ssp

» Use the saved ret addr
» Update ssp

13

Parallel Shadow Stack

* Where to put the shadow stack?
> Usually also in the stack region, but could be in other memory regions.

* How to organize the shadow stack?

> 1.e., where exactly to store copies of return addresses a the shadow stack?

- Return addresses on the shadow stack are scattered to match the
layout of the regular stack.

* How to index the shadow stack?
> Use a constant offset from the regular stack pointer

14

Parallel Shadow Stack

e.g., main() calls foo() and foo() calls bar()

Sp ==

ret. addr. to main

ret. addr. to bar

main’s frame

ret. addr. to main

foo’s frame

ret. addr. to foo

bar’s frame

high address

constant
offset

constant
offset

low address

e Shadow stack is of the same size as
the regular stack.

 Constant offset between each ret addr
on the regular and shadow stack

e Use sp + offset to index the ret addr on
the shadow stack
> Prologue: Save ret addr to sp + offset

> Epilogue: Load ret addr from sp + offset

15

Strengths and Weaknesses of Parallel Shadow Stack

» Strengths
> Fast

e \Weaknesses

> Memory consumption overhead is high.
» Hard-coded offset is a security hazard (easily accessible to adversaries).
» Compatibility issues for multi-threaded programs

- Constrained address space layout

16

Weaknesses of Shadow Stack for Return Addresses

* Increased complexity due to additional abstraction
> Increasing the complexity of the protected software
> Performance and memory overhead

> New security risks
- e.g. race conditions due to x86’s use of stack for return addresses

* Limited scope of protection

* Integrity of shadow stack itself
» Shadow stack protects return addresses, who protects shadow stack”

17

Overflowing Heap Critical User Data

/* record type to allocate on heap */
typedef struct chunk {

char inp[64]; /* vulnerable input buffer x/
void (%kprocess)(char x); ' to function x/

} chunk_t; Overflow the buffer on the heap to set the

void showlen(char xbuf) { function pointer to an arbitrary address.
int len = strlen(buf);
printf("buffer5 read %d chars\n", len);

}

int main(int argc, char xargv[]) {
chunk_t xnext = malloc(sizeof(chunk_t));
next—->process showlen;
printf("Enter value: ");
gets(next—>inp);
next—->process(next—>inp) ;
printf("buffer5 done\n");

18

Control-flow Graph (CFG)

* A program representation using graph notations.

* Node: A sequence of instructions without control flow transfers

* Edge: Control flow transfer between nodes

* Usually represent one function, but can also represent a whole program
 Critical to analyzing programs

19

How to Enforce Control-flow Integrity

» Compute a CFG

* For indirect control flow transfers, compute their target destinations
> Mostly via compiler or binary rewriting, but possible at run-time

* Before an indirect transfer, check the validity of the destination

* Two CFI policies:
> Label-based and type-based

20

Label-based CFI

* Assign and insert a label (ID) before each indirect transfer destination

* Before executing an indirect transfer, check the destination’s label
> Similar to using stack canaries / shadow stacks

bool 1lt(int x, int y) { sort2(): %I_'I-(M 1t():
return x < y; z ‘ § /,, label 17
} ca1l sort-] call 17,R_ §
bool gt(int x, int y) A | ret 23
return x > y; label 55 m\:,.:": label 23 &T U
} § _.-"':’:\\\\ § \\\ gt () :
~ N\ label 17
sort2(int al[], int b[], int len) call sort _-E ret 5> \\\ §
{ label 554 N
sort(a, len, 1t); § ret 23
sort(b, len, gt);
} ret ..
------------- » Direct forward transfer

— |ndirect forward transfer
<------ Backward transfer

Issues/Weaknesses of Label-based CFI

* Collision of labels with existing data/code
> Generally harder on x64 than RISC arch such as ARM
-e.g., in ARM, “mov r@, r@” (0x4600) can serve as a unique label
 \Very challenging to compute a precise CFQG
> A practical implementation:
- Use the same label for all function entrance
- Use the same label for all instructions following a call

22

Type-based CFl

* Use function signature (types of return value and args) as the target identifier

* Each signature is assigned a unique type ID
> e.0., “vold foo()”and “int bar()” will have different type IDs.

* Before an indirect call, check destination’s type ID against a predetermined ID

23

Weaknesses of Type-based CFI

* Needs source code or compiller IR; cannot do binary rewriting
* Only works for indirection function calls but not returns
* Allows indirect calls to a group of functions

> What if we have “int myFunc(const char xstr)”, which has the
same type ID as “int system(const char xcommand)”?

24

Fundamental Weaknesses of CFlI

* Performance and code size overhead
* Cannot be 100% accurate
 Backward CFl (i.e., protecting return addresses) is critical.
* An extra lay of complexity
> May need support from OS

* Limited protection scope
> Does not prevent data-only attacks

» Needs WAX/DEP

25

Goal of Testing

‘ ¢ ’ Detecting bugs automatically before they can cause damage.

20

Bugs vs. Vulnerabilities

Wikipedia: “A software bug is a bug in computer software.”

/
. '™ Wikipedia: “In engineering, a bug is a design defect in an
engineered system that causes an undesired result.”

Wikipedia: “Vulnerabilities are flaws in a computer system
that weaken the overall security of the system.”

Vulnerabillities -> Exploitable Bugs

https://en.wikipedia.org/wiki/Vulnerability (computer security)

27

https://en.wikipedia.org/wiki/Vulnerability_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computer_security)

“50% of my company employees are testers, and
the rest spends 50% of their time testing!”

Bill Gates 1995

28

Dynamic Analysis

* Analyzing the program when it is running with a specific input.
| * Many techniques

> Testing, fuzzing, taint tracking, differential testing, execution
iIntegrity monitoring, ...

29

Program Testing

. Ihe process of running a program on a set of test cases
and comparing the actual results with expected results.

e E.g., for the implementation of a factorial function, test cases
could be {0, 1, 5, 10}.

* Testing cannot guarantee program correctness.
> What'’s the simplest program that can fool the test cases above?

30

Impossibility of Testing

A software engineering walks into a bar and orders

e 1 beer
e 2 beers

e 9,999 beers

e -1 beer
e “abc” beers

* Alizard in a glass
Testing completed.

A real customer walks into the bar and ask where the toilets are.
The bar goes up In flames.

31

Program Testing

. Ihe process of running a program on a set of test cases
and comparing the actual results with expected results.

e E.g., for the implementation of a factorial function, test cases
could be {0, 1, 5, 10}.
* Testing cannot guarantee program correctness.

> What'’s the simplest program that can fool the test cases above?
* However, testing can catch many bugs.

32

Testing Process

+ Test oracle: A mechanism/tool that determines the correctness
of the tested program under a test case (input).

expected
~ oracle output
_ test
test data >@mpab resu|ts>
= real
1 Prog
output

How to select test data?

33

Selecting Test Data

e Testing is w.r.t. a finite test set.

> Exhaustive testing is usually not possible

> E.g, a function takes 3 integer inputs, each ranging over 1 to 1000
- Assume each test takes 1 second
- Exhaustive testing would take 10° = 1 billion seconds (~31.7 years!)

* How should we design the test set?

> Black-box testing
> White-box (or, glass-box) testing

34

Black-box Testing

. Generating test cases based on specification alone,
without considering the implementations (internals).

* Only focusing on the inputs and outputs

 Advantages
> No need for code knowledge
> Test cases are not biased toward an implementation.

35

Generating Black-box Testing Cases

static float sqrt (float x, float epsilon)
// Requires: x >= 0 && .00001 < epsilon < .001
// Effects: Returns sq such that x — epsilon <= sg%sq <= X + epsilon

* The precondition can be satisfied
> Either “x=0 and .00001 < epsilon < .0017,

> Or “x>0 and .00001 < epsilon < .001”
* Any test data should cover these two cases.

* Also test the case when x is negative and epsilon Is outside
the expected range.

360

More Examples of Black-box Testing

static boolean isPrime (int x)
// Effects: If x 1s a prime returns true else false

e Test cases: cover both true and false cases
* Also test numbers 0O, 1, 2, and negative numbers

static int search (int[] a, int x)
// Effects: If a 1s null throws NullPointerException else 1if x 1s 1n a,
// returns i such that ali]l=x, else throws NotFoundException

* [est cases:
> a = null
» A case wherea[i] = Xx forsome i
> A case where X Is not In the array a

37

Boundary Conditions

« Common programming mistakes: not handling boundary cases

> Input is zero

> Input Is negative
> Input Is null

>

* Test data should cover these boundary cases.

33

Example Program

static void appendVector (Vector v1, Vector v2)
// Effects: If vl or v2 1s null throws NullPointerException, else removes all
// elements of v2 and appends them in reverse order to the end of vl

e Test cases?

> v1 = null;
> v2 = null;
> v1is empty
> V2 IS empty

>

» v1 and v2 refer to the same vector

39

White-box Testing

. Looking into the internals of the program to figure out a
set of test cases

static int max0fThree (int x, int y, int z)
// Effects: Return the maximum value of X, y and z

* Black-box test cases?
« Assume you are given its implementation

static int maxO0fThree (int x, int y, int z) {
if (x>y)
if (x>z) return x; else return z;
else if (y>z) return y; else return z; }

* Looks like the implementation is divided into four cases

*X>Y&X>Z

*X>Y &X<=2Z
> X<=Y&Yy>Z
*X<=Yy&Yy<=2Z

40

Test Coverage

* |dea: code that has not been covered by tests are likely to contain bugs.

> Divide a program into a set of elements
- The definition of elements leads to different kinds of test coverage.
> Define the coverage of a test suite to be:

of elements executed by the test suite

of elements In total

41

Why is Test Coverage Important?

* Test quality is determined by the coverage of the program by the test set so far.

e Benefits:

> Can be used as a stopping rule: e.qg., stop testing if 95% of elements
have been covered.

> Can be used as a metric: a test set that has a test coverage of 80% is
better than one that covers 70%

> Can be used in a test case generator: look for a test which exercises
new elements not covered by the tests so far

42

Different Coverage Criteria

* Usually based on Control Flow Graph (CFG)

43

Control-flow Graph (CFG)

* A program representation using graph notations.

* Node: A sequence of instructions without control flow transfers

* Edge: Control flow transfer between nodes

* Usually represent one function, but can also represent a whole program
 Critical to analyzing programs

44

Example of Control-flow Graph (CFG)

void (xfn_p)() = foo;
printf("Hello from foo\n”);

/ foo()’s CFG

fn_p = bar;

\ fn_p(); printf("Hello from bar\n");

return 0;

main()’s CFG bar()’s CFG

45

Different Coverage Criteria

» Usually based on Control Flow Graph (CFG)

» Statement coverage
> Edge coverage
> Path coverage

>

46

A Running Example

//
//
//
//
//

= O 0 J o O b W DN -

Input: table is an array of numbers;

Input: n 1s the size of

Input: element 1s the element to be found
Output: found i1ndicates whether the element

1s 1n the table

found = false;
counter = 0;
while ((counter < n) &é&
{
1f (table[counter] ==
found = true;

counter++;

table

(! found))

element)

3b

47

Statement Coverage

1: found = false;

2: counter = 0;

3: while ((counter < n) && (!found))
4. |

5: 1f (table[counter] == element)
o : found = true;

7

8 : counter++;

9: }

10:

* Test data: table = {3, 4, 5}; n= 3; elements = 3

» Does it cover all statements?

- Yes
> But does it cover all edges?

- No, missing3a->10and 5 -> 7

3b

48

Statement Coverage in Practice

* 100% is very hard.
» Usually about 85% coverage

* Microsoft reports 80%-90% statement coverage.

e Safety-critical applications usually require 100% statement coverage.
> Boeing requires 100% statement coverage.

49

Does 100% statement coverage
mean the program is correct?

50

Edge Coverage

1: found = false;

2: counter = 0;

3: while ((counter < n) && (!found))
4. |

5: 1f (table[counter] == element)
o : found = true;

7

8 : counter++;

9: }

10:

* Test data to cover all edges
> table={3,4,5}; n = 3; element=3
> table={3,4,5}; n = 3; element=4
> table={3,4,5}; n = 3; element=6

3b

51

Path Coverage

* Path-complete test data: Covering every possible control flow path
* For example:

static int max0fThree (int x, int y, int z) {
1T (x>y)
if (x>z) return x; else return z;
else if (y>z) return y; else return z; }

> Test data iIs complete as long as the following four case are covered:
*X>Y&Y>Z
*X>Y&X<=2Z
*X<=Yy&Yy>2Z
e X<=Yy&Yy<=1Z

52

Does 100% path coverage
mean the program is correct?

53

Covering All Paths

* A program passes path-complete test data doesn’t mean it’s correct.
* For example:

static int max0fThree (int x, int y, int z) A
return X;
s

> “x=5, y=4, z=3" would pass the test and be path complete.

« Same goes for the case of all-statement coverage, or all-edge coverage.

54

Possibly Infinite Number of Paths

* Loop may cause infinite # of paths
> [n general, impossible to cover all of them.
* One heuristic
> Include test data that cover zero, one, and two iterations of a loop

> Why two iterations?

- A common programming mistake is failing to reinitialize data
In the second iteration.

> This offers no guarantee, but can catch many errors.

55

Path Coverage In The Presence of Loops

1: found = false;

2: counter = 0;

3: while ((counter < n) && (!found))
4. |

S 1f (table[counter] == element)
o : found = true;

]

8 : counter++;

9: }

10:

Figuring out a test suite that covers zero, one, and two iterations of the loop.
e Zero iterations: table={ }; n=0; element=3

* One iteration: table={3,4,5}; n=3; element=3

* Two iterations: table={3,4,5}; n=2; element=4

56

Combine Them All

* A good set of test data combines various testing strategies.

> Black-box testing
- Generating test cases by specifications

- Boundary conditions
> White-box testing

- Test coverage (e.g., being edge complete)

57

Example: Palindrome

// Effects: If s 1s null, throws NullPointerException,
// else returns true 1f s 1s a palindrome.

boolean palindrome(String s) throws NullPointerException A

int low = 0,
int high = s.length() - 1;
while (high > low) {

if (s.charAt(low) != s.charAt(high))

return false;

low++:

high——;
I3

return true;

}

What test cases, esp. boundaries cases, should be used?

58

Test Data for the Example

* Based on specifications it low = 0

» g = Null int high = s.length() - 1;

1 7 (high > low) A
> S = "deed (s.charAt(low) !'= s.charAt(high))
» g = “abc” false;

(9 " Low++;
> s =7 (boundary condition) high——:;
» s = “a” (boundary condition) b t

rue;

 Based on the program

> Not executing the loop

> Returning false in the first iteration

> Returning true after the first iteration

> Returning false in the second iteration

> Returning true after the second iteration

59

Test Coverage Tool: LLvm-cov/gcov

* [lvm-cov/gcov: Emit code coverage information

> Insert additional code through a compiller to track line coverage and
branch coverage

* Bundled with clang/gcc

> e.g.,, clang/gcc —coverage demo.c -0 demo

- Generated binary contains instrumentation code for code coverage.
- Many other interesting compiler options. See “clang/gcc --help” & “man gcov”

60

Example of Using gcov

#include <stdio.h>

int main (void) {

int 1;
for (i = 1; i < 10; i++) {
if (i % 3 == 0)
printf ("%d is divisible by 3\n", 1i);
if (i % 11 == 0)
printf ("%d is divisible by 11\n", 1i);
s
return 0;

}

eclang ——coverage demo.c -0 demo
e . /demo // Will generate a demo-demo.gcda

 gcov demo—demo—gcda // Will generate a coverage report demo.c.gcov

o1

gcov’s Code Coverage Report

HHHHH

| P OHFHFOWOS | - |

0:5ource:demo.c
0:Graph:demo—-demo.gcno
0:Data:demo—-demo.gcda
0:Runs:1

0:Programs:1
1:#include <stdio.h>

2:

3:int main (void) {

4: 1nt 1;

5: for (i =1; i < 10; i++) {

6: if (i % 3 == 0)

7 printf ("%d is divisible by 3\n", 1i);
8: if (i % 11 == 0)

o°F printf ("%d is divisible by 11\n", 1i);
10: s

11: return 0;

12:}

13:

62

Automated Test Generation

* Designing tests with good coverage is hard; not as clean as the examples.

> Manually designing a good test set is a major task.
> 100% coverage almost never achieved in practice

e Q: Can we automate it?
 \We can, for certain situations.

> Pre-condition and post-condition based test generation
> Fuzzing can be viewed as a way of automated test generation

03

Pre- and Post-Conditions

* A pre-condition is a predicate.
> Assumed to hold before a piece of code executes

* A post-condition is a predicate.

> Expected to hold after a piece of code executes,
whenever the pre-condition holds.

 Example

static float sqrt (float x, float epsilon)
// Pre: x >= 0 && .00001 < epsilon < .001
// Post: Returns sq such that x - epsilon <= sg*sq <= X + epsilon

oz

Test Generation Using Pre- and Post-conditions

* A simple algorithm

while (true) {
test = randomlyGenerate();
if (precondition(test)) {
ret = runTest(test);
if (!postcondition(ret,test)) error();

65

Fuzzing

66

UW-MADISON

COMPUTER SCIENCES

Barton P. Miller

Vilas Distinguished Achievement Professor
Amar & Balinder Sohi Professor in Computer Sciences

Research Interests

Binary code analysis and instrumentation, distributed and parallel program performance and
tools, software security, scalable systems, operating systems, software testing.

Brief Biography

Barton Miller is a Vilas Distinguished Achievement Professor and the Amar and Belinder Sohi
Professor of Computer Sciences at the University of Wisconsin, Madison. He received his B.A.
degree from the University of California, San Diego in 1977, and M.S. and Ph.D. degrees in
Computer Science from the University of California, Berkeley in 1980 and 1984.

Professor Miller is a Fellow of the ACM.

67

Origin of Fuzz Testing

* A night in 1988 with thunderstorm and heavy rain

* Connected to his office Unix system via a dial-up connection
* The heavy rain introduced noise on the line

* Crashed many UNIX utilities he had been using everyday

* He realized that there was something deeper

* Asked three groups in his advanced OS course to implement this idea
of fuzz testing

> Two groups failed to achieve any crash results!

> The third group succeeded! Crashed 25-33% of the utility programs
on the seven Unix variants that they tested

63

Fuzz Testing

. Run programs on many random, abnormal inputs and
look for bad behaviors in the responses.

* Bad behaviors such as crashes or hangs

Input Run program
®

—>—>,><>;

y

69

Fuzz Testing

* Approach
> Generate random inputs
> Run lots of programs using random inputs
> |dentify crashes of these programs
> Correlate random inputs with crashes

* Errors found:

> Not checking returns
> Array index out of bounds
> not checking null pointers

>

70

Why does Fuzzing Matter?

* Fuzzing finds reachable bugs effectively.
* Two orthogonal use cases:

> Proactive defense, part of testing
> Preparing offense, part of exploit development

OpenSSL e, c i

LLLLLLLLLLLLLLLLLL

2 W DLibreOfﬁcé

/1

Example

format.c (line 276):

while (lastc != '\n’) {

rdc();
}
input.c (line 27): Reading from a file and set each char to lastc
rdc () o If Lastc is a white space or tab, keep reading.
{ do { readchar(); } » At the end of file, set lastc to null
while (lastc == ' ' || lastc == ’"\t’);

return (lastc);

}

(2

Fuzz Testing Overview

* Black-box fuzzing

> Treating the system as a black box during fuzzing, i.e., not knowing
detalls of the implementation

* White-box fuzzing

> Designing input generation with full knowledge of the target software
* Grey-box fuzzing

> Having partial knowledge of the internals of the target

73

Black-box Fuzzing

* Like Miller, feed the program random inputs and see if it crashes.
* Pros: Easy to configure
* Cons: may not search efficiently

> May re-run the same paths over again (low coverage)

> May be very hard to generate inputs for certain paths (checksums,
hashes, format checks, restrictive conditions)

4

Black-box Fuzzing

 Example that would be hard for black-box fuzzing to find the error

function(char xname, char xpasswd, char xbuf) {
if (authenticate_user(name, passwd)) {
if (check format(buf)) {

update(buf); // bugs in here
I3

79

Mutation-based Fuzzing

» User supplies a well-formed input.

* Fuzzing: Generate random changes to that input, i.e., mutating the input
* Seed inputs: A set of initial inputs

* Mutations: bit flipping, truncation, duplications, byte changes, etc.

 No assumption about input

> Only assumes that variants of well-formed input may be problematic
for the program

 Example: zzuf

— https://github.com/samhocevar/zzut

/0

https://github.com/samhocevar/zzuf

Mutation-based Fuzzing

 Example of using zzuf

»zzuf —-s 0:1000000 —c -C @ —q —-T 3 objdump —-x win9x.exe

- Fuzz the program objdump using the sample input win9x.exe

- —S: seed from 1 to 1,000,000, used to change bits of input

- —C: fuzz files whose name is specified in the target application’s command line
- —C 0: Keep running when crashes detected

- —(: quiet mode

- —T 3: Each run limited to 3 seconds

7

Mutation-based Fuzzing

e Easy to set up, and not dependent on program detalls

 But may be strongly biased by the initial input
e Still prone to some problems, e.g., re-running the same paths over again

/83

Generation-based Fuzzing

* Generate inputs from scratch according to predefined rules/specifications
* Generated inputs are well-formed, adhering to the specs
 Can write a generator to generate well-formatted inputs

e Suitable for inputs with a specific format requirement
> e.0., JSSON/XML files, network traffic of certain protocols

79

Generation-based Fuzzing

e Can be more accurate, but at a cost

* Pros: More complete search
> Avoiding wasting time rejecting ill-formatted inputs
> Values are more specific to the program operations
> Can account for dependencies within inputs

e Cons
> May miss bugs triggered by ill-formatted inputs

> Writing good specifications is not easy.
> Need to specify a format for each program, i.e., program specific

30

Coverage-based/guided Fuzzing

e Rather than treating the program as a black box, instrument the
program to track coverage

> E.g., the coverage of statements/edges/paths

Input Run Program Crash
®

Random) > X X
- | '

&)

VvV

31

Why is Test Coverage Important?

* Test quality is determined by the coverage of the program by the test set so far.

e Benefits:

> Can be used as a stopping rule: e.qg., stop testing if 95% of elements
have been covered.

> Can be used as a metric: a test set that has a test coverage of 80% is
better than one that covers 70%

> Can be used in a test case generator: look for a test which exercises
new elements not covered by the tests so far

82

Coverage-based Fuzzing

* Rather than treating the program as a black box, instrument the
program to track coverage

> E.g., the coverage of statements/edges/paths

* Uses feedback from the program’s execution to guide new input generation
* Also called grey-box fuzzing

* Maintain a pool of high-quality tests
1. Start with some initial ones (seeds) specified by users
2. Run tests and record the code coverage

3. Mutate tests in the pool to generate new tests
4. Run new tests

5. If a new test leads to new coverage (e.g., edges), save the new test
to the pool; otherwise, discard the new test

83

gcov’s Code Coverage Report

HHHHH

| P OHFHFOWOS | - |

0:5ource:demo.c
0:Graph:demo—-demo.gcno
0:Data:demo—-demo.gcda
0:Runs:1

0:Programs:1
1:#include <stdio.h>

2:

3:int main (void) {

4: 1nt 1;

5: for (i =1; i < 10; i++) {

6: if (i % 3 == 0)

7 printf ("%d is divisible by 3\n", 1i);
8: if (i % 11 == 0)

o°F printf ("%d is divisible by 11\n", 1i);
10: s

11: return 0;

12:}

13:

84

Example of Coverage-based Fuzzer: AFL

* American Fuzzy Lop

85

AFL

* Mutation-based, coverage-guided, grey-box fuzzer
* The original version is no longer maintained; at L++ is the newer version.

86

AFL Learning Tutorials and Documents

https://github.com/mykter/afl-training
https://volatileminds.net/blog/

https://afl-1 .readthedocs.io/en/latest/user_guide.html
https://Icamtuf.coredump.cx/afl/

87

https://github.com/mykter/afl-training
https://volatileminds.net/blog/
https://afl-1.readthedocs.io/en/latest/user_guide.html
https://lcamtuf.coredump.cx/afl/

AFL Build

* Provides compiler wrappers for gcc/clang to instrument
target programs to track fuzzing (testing) coverage

* Replace your C compiler in your build process with afl-gcc/clang,
then build your target program with afl-gcc/clang

> Generates a binary instrumented for AFL fuzzing

883

Test Coverage Tool: LLvm-cov/gcov

* [lvm-cov/gcov: Emit code coverage information

> Insert additional code through a compiller to track line coverage and
branch coverage

* Bundled with clang/gcc

> e.g., clang/gcc —coverage demo.c -0 demo

- Generated binary contains instrumentation code for code coverage.
- Many other interesting compiler options. See “clang/gcc --help” & “man gcov”

89

Setting Up the Fuzzing

 Compiling through AFL
> Basically, replace gcc/clang with afl-gcc
» path—-to—afl/afl—-gcc test.c -0 test

* Fuzzing through AFL

» path—-to—-afl/afl-fuzz -1 testcase -0 output ./test @@

> Assuming test cases are under the testcase directory.

> Output goes to the output directory.

» @@ tells AFL to take the file names under testcase and feed them to test.

90

Setting Up the Environment

» After you install AFL but before you can use it effectively, you
need to set the following environment variables

export AFL I DONT CARE ABOUT MISSING CRASHES=1
export AFL SKIP CPUFREQ=1

* The former speeds up response from crashes.

* The latter suppresses AFL complaint about missing some
short-lived processes.

91

AFL Mutation Strategies

* Highly deterministic at first
> bit flips
» adding/subtracting integer values
> Overwriting parts of the input with “interesting values” (e.g., INT_MAX)
> Replacing parts of the input with predefined or auto-detected values

 Then, non-deterministic choices

> insertion/deletion bytes
> Overwriting with random values
> Others

92

Example of Using AFL

int main(int argc, charx argv[]) {
. // Some error checking code

FILE xfp = fopen(argv[1],"r");
. // Some error checking code

size t len;
// Asking getline to malloc by setting *line be null
char *line=NULL;
if (getline(&line, &len, fp) < 0) {
printf("Fail to read the file; exiting...\n");
exit(-1);
I3

// Convert the input 1into a long integer
long pos = strtol(line, NULL, 10);
. // Some error checking code

if (pos > 100) {
if (pos < 150) {
abort():; // Indicates abnormal termination

¥
}

fclose(fp);
free(line);

return 0;

AFL Display

* Track the execution of the fuzzer
* Input is a file containing number 55 for the previous toy program.

(test)

— overall results —
| run time : 0 days, 4 hrs, 29 min, 17 sec | cycles done : 300k

| 1last new path : 0@ days, 4 hrs, 29 min, 17 sec | total paths : 2

| last uniqg crash : 0 days, 4 hrs, 29 min, 16 sec | uniq crashes : 1

| Tlast uniq hang : none seen yet | uniq hangs : 0

- cycle progress :
| now processing : 0 (0.00%)
| paths timed out : 0 (0.00%)
- stage progress
| now trying : havoc

| stage execs : 189/256 (73.83%)
| total execs : 154M

| exec speed : 9476/sec
- fuzzing strategy yields

— process timing

I

I

I

I

map coverage I
map density : 0.01% / 0.01% |
count coverage : 1.00 bits/tuple |
findings in depth :
favored paths : 2 (100.00%) I
new edges on : 2 (100.00%) I
I

I

I

I

I

I

I

I

I

total crashes : 1 (1 unique)
total tmouts : 8571 (1 unique)
path geometry

bit flips : 1/48, 0/46, 0/42 levels : 2
byte flips : 0/6, 0/4, 0/0 pending : 0
arithmetics : 0/336, 0/50, 0/0 pend fav : 0

own finds : 1
imported : n/a
stability : 100.00%

dictionary : 0/0, 0/0, 0/0
havoc : 1/154M, 0/0

I

I

I

| known ints : 0/38, 0/112, 0/0
I

I

| trim : n/a, 0.00%

[cpu000: 2%]

Google “afl display explained” for more detailed explanations.

AFL Output

* Files generated in the output directory

* File “fuzzer_stats” provides summary of stats

* File “plot_data” shows the progress of fuzzer.

* Directory “queue” shows inputs that led to paths.

* Directory “crashes” contains the input that caused crashes.
* Directory “hangs” contains input that caused hang.

95

Example of fuzzer_stats

* Input is a file containing number 55 for the previous top program.

$ cat output-55-only/fuzzer_stats

start_time
last_update
fuzzer_pid
cycles_done
execs_done
execs_per_sec
paths_total
paths_favored
paths_found
paths_imported
max_depth
cur_path
pending_favs
pending_total
variable_paths
stability
bitmap_cvg
unique_crashes
unique_hangs
last_path
last_crash
last_hang

execs_since_crash :
: 20

: test

: 2.52b

: default
: ./afl-2.52b/afl-fuzz -1 testcase -o output ./test @@

exec_timeout
afl_banner
afl _version
target_mode
command_1line

O RO RFRPOOORFRNORFFNN

: 1728744413
: 1728760824
: 2818949

: 305707

: 156524727
: 9526.00

00.00%
.01%

: 1728744413
: 1728744414
: 0

156517779

96

Initial Test Caes Are Important for Fuzzing Speed

o renins oreey <o eravi]) | * For the toy example,
FILE *fp = fopen(argviil,"r"); > If the only test case Is 55, it takes longer
... // Some error checking code to find a crash than if the test cases are
size t len; 55 and 100
// Asking getline to malloc by setting *xline be null . _ .
char *line=NULL; - Since crashing tests are in [101, 149], the
if (getline(&line, &len, fp) < 0) { _ _
printf("Fail to read the file; exiting...\n"); teSt 1S CIOSG 'tO 100 SyntaCtlca”y_
exit(-1);
I3

// Convert the input 1into a long integer
long pos = strtol(line, NULL, 10);
. // Some error checking code

if (pos > 100) {
if (pos < 150) {
abort();
5
}

fclose(fp);
free(line);

return 0;

97

AFL Display

* Track the execution of the fuzzer
* Inputs are files containing number 55 and 100 for the previous top program.

(test)
— process timing — overall results —
run time : @ days, 1 hrs, 1 min, 31 sec cycles done : 15.1k
last new path : 0 days, 1 hrs, 1 min, 31 sec total paths : 3
last uniq crash : @ days, 1 hrs, 1 min, 31 sec uniq crashes : 1
last uniq hang : none seen yet uniq hangs : 0
- cycle progress — map coverage —I
now processing : 2 (66.67%) | map density : 0.01% / 0.01%
paths timed out : 0 (0.00%) | count coverage : 1.00 bits/tuple
|- stage progress — findings in depth
now trying : havoc favored paths : 2 (66.67%)
stage execs : 148/256 (57.81%) new edges on : 2 (66.67%)
total execs : 26.1M total crashes : 1 (1 unique)
exec speed : 7311/sec total tmouts : 37.1k (1 unique)
- fuzzing strategy yields . — path geometry
bit flips : 2/88, 0/85, 0/79 levels : 2
byte flips : 0/11, 0/8, 0/2 pending : 0
arithmetics : 0/616, /75, 0/0 pend fav : 0
known ints : 0/60, 0/224, 0/88 own finds : 1
dictionary : 0/0, 0/0, 0/0 imported : n/a
havoc : 0/11.6M, 0/14.5M stability : 100.00%
trim : n/a, 0.00% |

. : [cpu000: 2%]

More AFL Documents

e How does AFL work?

» http://lcamtuf.coredump.cx/afl/technical details.txt

* AFL user guide
»https://afl- 1 .readthedocs.io/en/latest/user guide.html

99

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Coverage Measurements

* Branch coverage + coarse-grained branch-taken hit counts
» Execution trace broken into (branch_src, branch_dest) pairs
- “A->B->C->D” to (A, B), (B, C), (C, D)

> A global map remembers whether a branch has been encountered
and their hit counts

> Coarse-grained branch hit counts: 8 hit-count buckets
-1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+

* An input Iis considered interesting only if

> |t covers a new branch, or
> It covers a new hit count bucket of a branch

100

Example of Control-flow Graph (CFG)

void (xfn_p)() = foo;
printf("Hello from foo\n”);

/ foo()’s CFG

fn_p = bar;

\ fn_p(); printf("Hello from bar\n");

return 0;

main()’s CFG bar()’s CFG

101

AFL Coverage Measurements

* Branch coverage + coarse-grained branch-taken hit counts
» Execution trace broken into (branch_src, branch_dest) pairs
- “A->B->C->D” to (A, B), (B, C), (C, D)

> A global map remembers whether a branch has been encountered
and their hit counts

> Coarse-grained branch hit counts: 8 hit-count buckets
-1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+

* An input Iis considered interesting only if

> |t covers a new branch, or
> It covers a new hit count bucket of a branch

102

Grey-box Fuzzing

* Finds flaws, but still does not understand the program

* Pros: Much more effective than black-box fuzzing
> Essentially no configurations
> Lots of crashes have been identified

* Cons: Still a bit of a stab in the dark
» Searches for inputs independently from the program
> May not be able to execute some paths

* Need to improve the effectiveness further

103

Takeaway

* Fuzz testing aims to achieve good program coverage with little
effort for the programmer.

* Challenge is to generate good inputs.

 AFL (grey-box) is now commonly used.

104

A4: Fuzzing and Fixing Programs

* Use AFL to fuzz a simple program to find inputs that trigger crashes/hangs
* Use those inputs to locate errors in the program and provide fixes

e Read the manual/documents!

105

