CSCI 4907/6545 Software Security
Fall 2025

Instructor: Jie Zhou

Department of Computer Science
George Washington University

GW

Slides materials are partially credited to Gang Tan of PSU.

Outline

* Review: Testing and Fuzzing
e Software-based Memory Isolation
e Hardware-based Memory Isolation

Program Testing

. Ihe process of running a program on a set of test cases
and comparing the actual results with expected results.

e E.g., for the implementation of a factorial function, test cases
could be {0, 1, 5, 10}.
* Testing cannot guarantee program correctness.

> What'’s the simplest program that can fool the test cases above?
* However, testing can catch many bugs.

Testing Process

+ Test oracle: A mechanism/tool that determines the correctness
of the tested program under a test case (input).

expected
~ oracle output
_ test
test data >@mpab resu|ts>
= real
1 Prog
output

How to select test data?

Selecting Test Data

e Testing is w.r.t. a finite test set.

> Exhaustive testing is usually not possible

> E.g, a function takes 3 integer inputs, each ranging over 1 to 1000
- Assume each test takes 1 second
- Exhaustive testing would take 10° = 1 billion seconds (~31.7 years!)

* How should we design the test set?

> Black-box testing
> White-box (or, glass-box) testing

Black-box Testing

. Generating test cases based on specification alone,
without considering the implementations (internals).

* Only focusing on the inputs and outputs

 Advantages
> No need for code knowledge
> Test cases are not biased toward an implementation.

White-box Testing

. Looking into the internals of the program to figure out a
set of test cases

Boundary Conditions

« Common programming mistakes: not handling boundary cases

> Input is zero

> Input Is negative
> Input Is null

>

* Test data should cover these boundary cases.

Test Coverage

* |dea: code that has not been covered by tests are likely to contain bugs.

> Divide a program into a set of elements
- The definition of elements leads to different kinds of test coverage.
> Define the coverage of a test suite to be:

of elements executed by the test suite

of elements In total

Why is Test Coverage Important?

* Test quality is determined by the coverage of the program by the test set so far.

e Benefits:

> Can be used as a stopping rule: e.qg., stop testing if 95% of elements
have been covered.

> Can be used as a metric: a test set that has a test coverage of 80% is
better than one that covers 70%

> Can be used in a test case generator: look for a test which exercises
new elements not covered by the tests so far

10

Possibly Infinite Number of Paths

* Loop may cause infinite # of paths
> [n general, impossible to cover all of them.
* One heuristic
> Include test data that cover zero, one, and two iterations of a loop

> Why two iterations?

- A common programming mistake is failing to reinitialize data
In the second iteration.

> This offers no guarantee, but can catch many errors.

11

Combine Them All

* A good set of test data combines various testing strategies.

> Black-box testing
- Generating test cases by specifications

- Boundary conditions
> White-box testing

- Test coverage (e.g., being edge complete)

12

Fuzz Testing

. Run programs on many random, abnormal inputs and
look for bad behaviors in the responses.

* Bad behaviors such as crashes or hangs

Input Run program
®

—>—>,><>;

y

13

Fuzz Testing Overview

* Black-box fuzzing

> Treating the system as a black box during fuzzing, i.e., not knowing
detalls of the implementation

* White-box fuzzing

> Designing input generation with full knowledge of the target software
* Grey-box fuzzing

> Having partial knowledge of the internals of the target

14

Mutation-based Fuzzing

» User supplies a well-formed input.

* Fuzzing: Generate random changes to that input, i.e., mutating the input
* Seed inputs: A set of initial inputs

* Mutations: bit flipping, truncation, duplications, byte changes, etc.

 No assumption about input

> Only assumes that variants of well-formed input may be problematic
for the program

 Example: zzuf

— https://github.com/samhocevar/zzut

15

https://github.com/samhocevar/zzuf

Generation-based Fuzzing

* Generate inputs from scratch according to predefined rules/specifications
* Generated inputs are well-formed, adhering to the specs
 Can write a generator to generate well-formatted inputs

e Suitable for inputs with a specific format requirement
> e.0., JSSON/XML files, network traffic of certain protocols

16

Coverage-based Fuzzing

* Rather than treating the program as a black box, instrument the
program to track coverage

> E.g., the coverage of statements/edges/paths

* Uses feedback from the program’s execution to guide new input generation
* Also called grey-box fuzzing

* Maintain a pool of high-quality tests
1. Start with some initial ones (seeds) specified by users
2. Run tests and record the code coverage

3. Mutate tests in the pool to generate new tests
4. Run new tests

5. If a new test leads to new coverage (e.g., edges), save the new test
to the pool; otherwise, discard the new test

17

AFL

* Mutation-based, coverage-guided, grey-box fuzzer
* The original version is no longer maintained; at L++ is the newer version.

18

AFL Mutation Strategies

* Highly deterministic at first
> bit flips
» adding/subtracting integer values
> Overwriting parts of the input with “interesting values” (e.g., INT_MAX)
> Replacing parts of the input with predefined or auto-detected values

 Then, non-deterministic choices

> iInsertion/deletion bytes
> Overwriting with random values
> Others

19

Grey-box Fuzzing

* Finds flaws, but still does not understand the program

* Pros: Much more effective than black-box fuzzing
> Essentially no configurations
> Lots of crashes have been identified

* Cons: Still a bit of a stab in the dark
» Searches for inputs independently from the program
> May not be able to execute some paths

* Need to improve the effectiveness further

20

Memory Isolation

21

Architecture of Modern Computers

Input

How to ensure safety when sharing memory with untrusted programs?
How to ensure safety when sharing memory with untrusted components? .

In the Beginning Days

* Batch Processing
> Single User, Single Process, Single
Machine

» Submitted your code to the person who
ran your program on the machine

* Problem: Lots of idle time
~ /O walits
- Human/operational delays
> Debug/reseting cycles

23

Time Sharing System

* Each program has a “share” of the CPU time

* The program has the impression of the only program.
> Each process is sharing the computer resources.
>~ Swapping in and out when share is up or waiting on other resources
~ Appearance of concurrently running process

* Problem: How to maintain isolation between programs??

24

Shadow Stack for Return Address Integrity

* A separate stack dedicated to storing a copy of each return address

* A program can use the return address on the shadow stack
> Checking the validity of the original return address
> Directly using the copy on the shadow stack to return

high address

Shadow Stack

Regular Stack

low address

Weaknesses of Shadow Stack for Return Addresses

* Integrity of shadow stack itself
» Shadow stack protects return addresses, who protects the shadow stack?

20

Principles for Building Secure Software Systems

e |solation

* Least Privilege

e Fault Compartmentalization
* Trust and Correctness

27

Principle: Isolation

. Isolate two components from each other

« One component cannot access data/code of the other component
except through a well-defined API

User-space application may only access the disk through the filesystem
API (i.e., the OS prohibits direct block access to raw data). The OS
iIsolates the user-space process from the disk.

eg.
]
& Isolation incurs overhead due to switching cost between components.

28

Isolation via Protection Domains

* A fundamental idea in computer security

» [Lampson 74] “Protection”: https://dl.acm.org/doi/pdf/10.1145/775265.775268
e Structure a computer system to have multiple protection domains

> Each domain is given a set of privileges, according to its trustworthiness

29

https://dl.acm.org/doi/pdf/10.1145/775265.775268

Example: Separation between OS and Applications

Application 1 coe Application n

‘v 1
‘ Syscalls ‘

OS Kernel

* One OS domain (the kernel mode)

> Privileged: executed privileged instructions; set up virtual memory;
perform access control on resources; ...

* Multiple application domains

> Go through OS syscalls to request access to privileged operations
> Application domains are isolated by the OS.

Isolating Untrusted Components

* Using separate protection domains is a natural choice for
Isolating untrusted components.

> E.g., Isolating plug-ins in a web browser

- Malfunctioning/malicious plug-ins would not crash or violate the
security of the browser.

> E.g., isolating device drivers in an OS

31

Many Forms of Protection Domains

e Hardware-based virtualization: Each domain in a virtual machine

> Pros: high degree of isolation
» Cons: extremely high overhead when context switching between domains

* OS processes: each domain in a separate OS process

> Pros: easy to use; strong isolation
> Cons: high context-switch overhead

* Language-based isolation: rely on languages features such as types

> Pros: fine-grained, portable, flexible, low overhead
> Cons: high engineering effort to use languages/features

32

Software-based Fault Isolation (SFl)

* Introduced by [Wahbe et al. 93] for MIPS

> [IMcCamant & Morrisett 06] extended it to x86
> [IPNaCl] Google implemented SFI for ARM, ADM64, & MIPS for Chrome

* SFIl is within the the same process address space
> One type of intra-address space isolation
> Each protection domain has a designhated memory region.
> Same process: avoiding costly context switches

* Implementation by inserting software checks before critical instructions
> E.g., memory reads/writes, indirect branches

* Pros: Fine-grained, flexible, low context-switch overhead
* Cons: May require compiler support and software engineering effort

33

SFI Sandbox Setup

Fault Domain

R (Sandbox) e Data region (DR): [DB, DL]
> > Hold data: stack, heap, global

oL Data Region e Code region (DR): [CB, CL]

CR g > Hold code
. e Safe external (SE) addresses

cL Code Reglon > Host trusted services that require higher privileges
- > Code can jump to them for accessing resources.

- » Code can safely transition out of the current domain.
SE + * DR, CR, and SE are disjoint.

34

SFI Policy

Fault Domain
DB (Sandbox) (Dafa-access policy: A
All mem reads/writes
remain in [DB, DL]
DL
CB
/Control-flow policy: A
CL A Control-flow targets must

— " N T~ remainin [CB,CL] U SE

" {——

Implications of the SFI Policy

* Non-writable code
> All memory writes must write to DR.
> Code region cannot be modified.
- No self-modifying code
* Non-executable data
> Control flow cannot transfer to the data region
> Cannot inject data to DR and execute it as code

- Code injection disallowed

360

Stronger SFI Policies

 An SFI might implement a stronger/more restrictive policy
> For iImplementation convenience
> For fine-grained safety
> For efficiency

* E.g., PittSFleld [McCamant & Morrisett 00]

> Disallow jumping into the middle of instructions on x86,
which has variable-sized instructions

* E.g., NaCl [Yee et al. 09]
> Disallow system call instructions in the code region

37

SFl Enforcement Overview

* Dangerous instructions: memory reads/writes, control-transfer instructions

> They have the potential of violating the SFI policy.
* SFI enforcement

> Check every dangerous instruction to ensure it obeys the policy
* Two general enforcement strategies

> Dynamic binary translation
> Inlined reference monitors

33

Dynamic Binary Translation (DBT)

. lranslates binary code at execution time

« Commonly used in virtualization and instruction emulation.

* Flexible and adaptable to the running environment

* For a dangerous instruction, the interpreter checks

Dynamic if it is safe according to the policy
Binary

* No need to modity program’s code ahead of time

* High runtime overhead
 Complex to implement
* Writable code region is generally more dangerous.

Translator

39

Inlined Reference Monitors (IRM)

e A static program rewriter

> Inlines checks into the target program
* More efficient

> No dynamic translation costs
> Can optimize checks via static analysis

* More trustworthy

Program
+ checks
Verifier

lpass

> A separate verifier can check that checks are inlined correctly.

40

Strategies for Implementing IRM Rewriters

* Binary rewriting
> [nput: binary code
» Steps: perform disassembly; insert checks; assembly the instrumented code
> Pros: not requiring source code
> Cons: hard to disassemble and analyze stripped binaries

* Inside a compiler
> Input: source or IR code
> Steps: compiller inlining checks before generating binary code

> Pros: can perform more optimizations on checks with richer
information about code, e.qg. types

» Cons: need source or IR code

41

Example

r3:=rl * r1 is a pointer to the beginning of an array
- *
:: - ﬁ X f4 e r2 holds the array’s length
.= 0 * The program computes in r5 the sum of the array items.
loop:

if r3 = r4 goto end

ré := mem(r3) int xend = arr + len x 4;

int sum = 0;

r5:=r5+r6 while (arr < end) {
r3:=r3+4 sum += xarr;
jmp loop arr++;

end: }

42

Naive Enforcement

r3:=rl .
A= %A * Insert checks before memory reads/writes
r4 :=rl+r4
r5:=0
loop:
if r3 > r4 goto end Assume we want to ensure memory access Is

ré := mem(r3)=——————p contained in data region, we need to insert checks

r5:=r5+r6 before this memory access:
r3:=r3+4

J'rzp loop if r3 < DB goto error
ena.

1f r3 > DL goto error

43

Naive Enforcement

e Sufficient for security requirement for isolation
* Has a high runtime overhead
> Two checks per memory access

* A practical SFI needs to implement optimizations to drive down the cost.
> E.9., remove redundant checks

44

Optimization: Integrity-only Isolation

* A program performs many more reads than writes.

» In SPEC2006, 50% instructions perform some memory reads or writes;
only 10% perform memory writes [Jaleel 2010]

* For integrity, check only memory writes
» Sufficient when confidentiality is not needed or less of a concern.

e Much more efficient

> [Wahbe et al. 1993] on MIPS using typical C benchmarks

- 22% execution overhead when checking both reads and writes;
4% when checking only writes

> PittSFleld on x32 using SPECIint2K

- 21% execution overhead when checking both reads and writes;
13% when checking only writes

Jaleel 2010: https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

45

https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

Optimization: Data Region Specialization

» Special bit patterns for addresses in DR
> To make address checks more efficient

* One idea in the original SFI [Wahbe et al. 1993]

> Data region addresses have the same upper bits, which are called the
data region ID.

> Only one check is needed: check whether an address has the right
region |ID.

46

Optimization: Data Region Specialization

« Example: DB = 0x12340000 ; DL = 0x1234FFFF
> The data region ID is 0x1234

e ro = mem(r3) becomes

rl® = r3 >> 16 // right shift 16 bits to get the region id
1T rl@ '= 0x1234 goto error
rée = mem(r3)

47

Optimization: Address Masking

* Address checking stops the program when the check fails
> Strictly speaking, unnecessary for isolating faults

48

Software-based Fault Isolation (SFl)

* Introduced by [Wahbe et al. 93] for MIPS
> [IMcCamant & Morrisett 06] extended it to x86
> [IPNaCl] Google implemented SFI for ARM, ADM64, & MIPS for Chrome

* SFIl is within the the same process address space
> One type of intra-address space isolation
> Each protection domain has a designhated memory region.
> Same process: avoiding costly context switches

* Implementation by inserting software checks before critical instructions
> E.g., memory reads/writes, indirect branches

* Pros: Fine-grained, flexible, low context-switch overhead
* Cons: May require compiler support and software engineering effort

49

Optimization: Address Masking

* Address checking stops the program when the check fails
> Strictly speaking, unnecessary for isolating faults

* A more efficient way: force the address of a memory operation to be
a DR address and continue execution

> Called address masking
> “Ensure, but don’t check.”

- When using data region specialization, just modify the upper bits in the
address to be the region ID

- PittSFleld reported 12% performance gain when using address masking
instead of checking for SPECint2000

50

Optimization: Address Masking

« Example: DB = 0x12340000 ; DL = 0x1234FFFF
> The data region ID is 0x1234

e Instead of

rl® = r3 >> 16 // right shift 16 bits to get the region id
1T rl@ '= 0x1234 goto error
rée = mem(r3)

e ro = mem(r3) becomes

r3 = r3 & Ox0000FFFF // bit-mask to clear the first 16 bits
r3 = r3 | 0x12340000 // bit-mask to set the first 16 bits to 0x1234
rée = mem(r3)

Anything suspicious/questionable?

Wait! What about Program Semantics?

* “Good” programs will not get affected.

> “Good” programs will not access memory outside DR.
> For bad programs, we don’t care about whether its semantics get destroyed.

* Cons: Does not pinpoint the policy-violating instructions.
> A downside for debugging and assigning blame

52

Optimization: One-instruction Address Masking

e |dea

> The data region ID has only a single bit on.
> Mark the zero-ID region unmapped in the address space
* A memory access Is safe

> If an address is either in the data region or in the zero-ID region

> an access to the zero-ID region generates a hardware trap because
It accesses unmapped memory

* Benefit: Cutting down one instruction for masking
> PittSFleld reported 10% performance gain on SPECint2000

53

Optimization: One-instruction Address Masking

 Example: DB = 0x20000000 ; DL = 0x2000FFFF
> The data region ID is 0x2000

e ro = mem(r3) becomes

r3 = r3 & O0x2000FFFF // bit-mask to set the region ID
rée = mem(r3)

* Result is an address in DR or in the unmapped zero-ID region.

e Cons: Limit the number of domains

> [n a 32-bit system, if a DR’s size is 2n, then we can have at most
32—-n fault domains.

54

Data Guards

* A data guard refers to either address checking or address masking.
> When which one is used is irrelevant.

e Introduce a pseudo-instruction “r’'=dGuard(r)”

> To hide implementation details
* An implementation should satisfy the following properties of r’=dGuard(r)”

> If ris in DR, then r’ should equal r
> |f r IS outside DR, then

- For address checking, an error state is reached.
- For address masking, rr’ gets an address within the safe range

- The safe range is implementation specific; it’s often DR.

55

Shadow Stack for Return Address Integrity

* A separate stack dedicated to storing a copy of each return address

* A program can use the return address on the shadow stack
> Checking the validity of the original return address
> Directly using the copy on the shadow stack to return

high address high address

Shadow Stack Shadow Stack

Regular Stack Regular Stack

low address low address

Optimization: Guard Zone/Page

} csve Place a guard zone before/after a data region.
DB WS Guard zones are unmapped or not readable/writable.

> Access to guard zones are trapped by hardware.

| Assume Guard Zone’s size is GSize, a memory read/
Pata Region write is safe if the address is in [DB-GSize, DL+GSize].

e Also called red zone

DL

>

57

Guard Zones Enable More Optimizations

-} ss,. ° In-place sandboxing
DB X e Redundant check elimination

* Loop check hoisting

D

L
>

58

Optimization: In-place Sandboxing

* A commonly used addressing mode in memory operations

> A base register plus/minus a small constant offset
> E.g., the register points to the start address of a struct, and
the constant is the offset to a field.
* In this case, just guard the base register in place is
sufficient, when the constant is no greater than GSize.

59

Optimization: In-place Sandboxing

e Example: r6 = mem(r3 + 12) becomes

r3 = dGuard(r3)
ré = mem(r3 + 12)

* Why is the above safe?

» “r3 1= dGuard(r3)” constrains r3 to be in DR and then r3+12
must be in [DB-GSize, DL+GSize], assuming GSize > 12.

60

Optimization: In-place Sandboxing

 NaCl-x86-64 (Sehr et al., 2010) implemented a similar optimization.
* Put guard zones of 40GB above and below a 4GB sandbox

> 64-bit machines have a large virtual address space

> As a result, most addresses in memory operations can be.
guaranteed to stay in [DB-GSize, DL+GSize].

o1

Optimization: Redundant Check Elimination

* |[dea: perform range analysis to know the range of values of registers
and use that to remove redundant data guards

rl := dGuard(rl)
<

r2 := mem(rl + 4)

_________ r1 € [DB,DL]

... // rlis not changed in between

r3 := mem(rl + 8)

r1 € [DB,DL]

Removing the redundant guard

S

62

Optimization: Loop Check Hoisting

* |dea: A guard in a loop is hoisted outside of the loop.

> The guard is performed only once per loop instead of once
per loop Iteration.

* Key observation

> |f addr € [DB-GSize, DL+GSize], then a successful (untrapped)
memory operation via addr means addr € [DB, DL].

03

Loop Check Hoisting Example

Before optimization After optimization
r3:=rl r3:=rl
rd :=r2 * 4 r4 :=r2 *4
rd . =rl+r4 rd .=rl+rd
r5:=0 r5:=0

loop: >3 := dGuard(r3) >
if r3 >r4 goto end loop:

13 := dGuard(r3 if r3 > r4 goto end
ré := mem(r3) ré := mem(r3)
r5:=r5+r6 r5:=r5+r6
r3:=r3+4 r3:=r3+4
jmp loop jmp loop

end: end:

*rlis a pointer to the beginning of an array; r2 holds the array length; the
program computes in r5 the sum of array elements

Why is the Optimized Code Safe?

r3:=rl

r4 :=r2 * 4

rd.=rl+r4

r5:=0

r3 := dGuard(r3)
loop:

ifr3=>r4 goto en

ré := mem(r3)

5:=r5+r6

r3:=r3+4

jmp loop
end:

I II Q."

<

'Canshow r3 € [DB,DL+4]
is ‘Ioop intlariam‘

'[DB, DL+4]
C [DB- GS|ze DL+GS|ze]

‘ \E

II
1
ll

,,,r3 € [DBDL] |
='r3 € [DB,DL+4] g
r3 € [DB, DL+4]
r3 € [DB,DL]

|
1
|

I
I
I

|
I
I

I
I
I

r3 € [DB+4,DL+4]

65

Optimization: Guard Changes Instead of Uses

 Some registers are changed rarely but used often.

> E.g., in 32-bit code, ebp is usually set in the function prologue and
used often in the function body.

 Sandbox the changes to those special registers, instead of uses
> E.9., ebp = esp becomes

ebp = esp
ebp = dGuard(ebp)

> Later uses of %ebp plus a small constant do not need to be
guarded, if used together with guard zones.

60

Optimization: Data Region Specialization

* Example: DB = 0x12340000; DL = 0x1234FFFF
> The data region ID is 0x1234

e ro = mem(r3) becomes

rl® = r3 >> 16 // right shift 16 bits to get the region id
1T r1l@ '= 0x1234 goto error
ré =fmem(r3)

r10 Is a scratch register

6/

Scratch Registers

* The SFI rewriting may require finding scratch registers to store
Intermediate results.

* If the old values of scratch registers need to be used later, we need to
save and restore the old values on the stack.

* How to avoid that?

63

Optimization: Finding Scratch Registers

* Binary rewriting
> Perform binary-level liveness analysis to find dead registers as scratch registers.
 Compile-level rewriting

> Approach 1: Reserve dedicated registers as scratch registers
- E.qg., PittSFleld reserves ebx as the scratch register by passing GCC a special option.
- Downside: increase register pressure
> Approach 2: Rewrite at the level of an IR that has an unlimited number of
virtual registers.
- E.g. LLVM IR

- A later register allocation phase maps those variables to registers or stack slots.

69

Anything Vulnerable about This Program?

r3:=rl

=D %4 What if a control flow hijacking (e.q., by corrupting an
_ return address) causes the control flow to jump over
rd:=rl+r4d .
P dGuard and directly go to the memory access?
r3 := dGuard(r3)
loop:

if r3 = r4 goto end
ré := mem(r3)

r5:=r5+r6
r3:=r3+4
jmp loop

end:

70

Risk of Indirect Branches

* In general, any indirect branch might cause such a worry.
> If not carefully checked, it may bypass the guard.

e Indirect branches include

> Indirect calls (calls via register or memory operands)
> Indirect jumps (jJumps via register or memory operands)
> Return instructions

/1

CFl is often needed for other security
policies such as SFl.

/2

How to Enforce Control-flow Integrity

» Compute a CFG

* For indirect control flow transfers, compute their target destinations
> Mostly via compiler or binary rewriting, but possible at run-time

* Before an indirect transfer, check the validity of the destination

* Two CFI policies:
> Label-based and type-based

73

Label-based CFI

* Assign and insert a label (ID) before each indirect transfer destination

* Before executing an indirect transfer, check the destination’s label
> Similar to using stack canaries / shadow stacks

bool 1lt(int x, int y) { sort2(): %I_'I-(M 1t():
return x < y; z ‘ § /,, label 17
} ca1l sort-] call 17,R_ §
bool gt(int x, int y) A | ret 23
return x > y; label 55 m\:,.:": label 23 &T U
} § _.-"':’:\\\\ § \\\ gt () :
~ N\ label 17
sort2(int al[], int b[], int len) call sort _-E ret 5> \\\ §
{ label 554 N
sort(a, len, 1t); § ret 23
sort(b, len, gt);
} ret ..
------------- » Direct forward transfer

— |ndirect forward transfer
<------ Backward transfer

Example of Label-based CFI

Bytes (opcodes) x86 assembly code Comment

FF E1l jmp ecx ; a computed jump instruction
81 39 78 56 34 12 cmp [ecx], 12345678h ; compare data at destination
75 13 jne error_label ; 1f not ID value, then fail
8D 49 04 lea ecx, [ecx+4] ; skip ID data at destination
FF E1 jmp ecx ; jump to destination code

Bytes (opcodes) x86 assembly code Comment
8B 44 24 04 mov eax, [esp+4] ; first instruction
; of destination code
78 56 34 12 DD 12345678h ; label ID, as data
8B 44 24 04 mov eax, [espt4] ; destination instruction

79

Align-chunk Enforcement

e Divide the code into chunks of some size
> E.9., 16 or 32 bytes

* Each chunk starts at an aligned address
> SO we can force an address to align by chunkSize with “addr / chunkSize”

 Make dangerous instructions and their guards stay within one chunk.
»E.g., “r10 := dGuard(rl@); mem(rl@) := r2” stay within one chunk

* Insert guards before indirect branches so that they target only aligned
addresses (chunk beginnings)

/0

Example of Align-chunk Enforcement

e Assume

» CRis [0x10000000, 0x1000FFFF]; code region ID is 0x1000
» Chunk size is 16 bytes.
» Zero-ID region [0x00000000, 0x0Q00OFFFF] unmapped

* Then, “Jmp rax” becomes

rax = rax & 0x1000FFFO
jmp rax

* Ensures that the target address Is

> In CR or zero-ID region

- after &, r's upper 16 bits must be either 0x0000 or 0x1000
> a chunk beginning

- after &, r’s lower four bits must all be 0, meaning it’s 16-byte aligned

7

Downside of Align-chunk Enforcement

* All legitimate jump targets have to be aligned.
> No-ops have to be inserted for that.

* E.g., assuming a 16-byte chunk, and each instruction is 4-byte long.

rl = mem (r2) r2 = dGuard(r2)
r3 = mem (r4) rl = mem (r2)

nop
l' nop
--------------------------- chunk boundary
r2 = dGuard(r2) r4 = dGuard(r4)
rl = mem (r2) / r3 = mem (r4)

rd = dGuard(r4)
r3

mem (r4)

/83

Downside of Align-chunk Enforcement

* All legitimate jump targets have to be aligned.
> No-ops have to be inserted for that.

e Extra no-ops slow down execution and increase code size

> |n PittSFleld, inserted no-ops account for half of the runtime overhead;
NaCl-JIT incurs 37% slowdown because of no-ops.

> |In NaCl-x64, the code size becomes 60% larger.

79

SFI Applications

* [solating OS kernel modules such as device drivers

» MISFIT [Small 97]; XFI [Erlingsson et al. 06]; BGI [Castro et al. 09];
LXFI [Mao et al. 11]

* |[solating plug-ins in Chrome
> NaCl [Yee et al. 09]; NaCl-x64 [Sehr et al. 10]

* |solating native libraries in the Java Virtual Machine
> Robusta [Siefers et al. 10]; Arabica|Sun & Tan 12]

30

Google’s Native Client (NaCl & PNaCl)

* SF| service in Chrome
* Goal: download native code and run it safely in the Chrome browser

» Much safer than ActiveX controls
> Much better performance than JavaScript, Java, etc.

* Google’s main motivation: run native-code games in Chrome
* Replaced by WebAssembly in 2017

DOOM in NaCl

31

NaCl: Code Verification

» Code is verified before running

» Allow a restricted subset of x86 instructions

- No unsafe instructions: privileged instructions,
modifications of segment state, ...
» Ensure SFI checks are correctly implemented for the SFI policy.

82

NaCl Sandboxing

* X86-32 sandboxing based on hardware segments

» Sandboxing reads and writes for free
» 5% overhead for SPEC2000 benchmarks

* However, hardware segments not available in x86-64 or ARM
» Use instructions for address masking [Sehr et al. 10]
» x86-64/ARM: 20% for sandboxing memory writes and computed jumps

83

SFIl Review

* SFI policy: data-access policy; control-flow policy
* SFI enforcement: inlined reference monitoring (IRM)
* Enforcing data-access policy
> Naive enforcement and optimizations for the data-access policy
- Data masking; guard zones; ...
* Enforcing control-flow policy

> Additional constraints: must prevent checks from being bypassed;
must prevent jumping into middles of instructions

34

Hardware-assisted Memory Isolation

89

$ cat /proc/147967/map
map_files/ maps
jle@fedora: /home/jle

$ cat /proc/147967/maps
564b3aef8000-564b3aefd000
564b3aefd000-564b3b23500¢
564b3b235000-564b3b2a100y
564b3b2a1000-564b3b2b500¢0
564b3b2b5000-564b3b2e900¢0
564b3b2e9000-564b3b2 8000
564b3b349000-564b3b75T000
7te39c600000-7fe3aalldono
7fe3aal2a000-7fe3aal2e0po
7fe3aal2e000-7fe3aal300Q0
7fe3aal30000-7fe3aal330040
7fe3aal33000-7fe3aal3400
7fe3aal34000-7fe3aal3500¢
7fe3aal35000-7fe3aal36000
7fe3aal36000-7fe3aal38000
7fe3aal38000-7fe3aala8000
7fe3aala8000-7fe3aald0000
7fe3aald0000-7fe3aald1000
7fe3aald1000-7fe3aald2000
7fe3aald2000-7fe3aalfad0o
7fe3aalfa00-7fe3aa363000
7fe3aa363000-7fe3aa3b1000
7fe3aa3b1000-7fe3aa3b5000
7fe3aa3b5000-7fe3aa3b7000
7fe3aa3b7000-7fe3aa3c1000
7fe3aa3c1000-7fe3aa3c3000
7fe3aa3c3000-7fe3aa3c6000
7fe3aa3c6000-7fe3aa3c7000
7fe3aa3c7000-7fe3aa3c8000
7fe3aa3c8000-7fe3aa3c9000

——— P P— PN J— P PN

How is the memory access permission enforced?

D0000000
10005000

j0005000
00000000

)/ 00000000

00002000
00072000
00099000
00092000
00000000
00028000
00191000
001de000
001e2000
00000000
00000000
00002000
00005000
00005000
00006000

Memory Mapping of vim

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

20
20
20
20
20
00
00
20
00
20
20
20
20
00
20
20
20
20
20
20
20
20
20
20
00
20
20
20
20

160559
160559
160559
160559
160559
0

0
21612
0
37425
37425
37425
37425
0
38428
38428
38428
38428
38428
37490
37490
37490
37490
37490
0
160557
160557
160557
160557
160557

PN YN PN PN SEEE sEmmmn gmmn o ama

/usr/bin/vim
/usr/bin/vim
/usr/bin/vim
/usr/bin/vim
/usr/bin/vim

[heap]

/usr/1lib/locale/locale-archive

/usr/1ib64/libattr.so.
/usr/1ib64/libattr.so.
/usr/1ib64/libattr.so.
/usr/1ib64/libattr.so.

/usr/1ib64/1libpcre2-8.
/usr/1ib64/libpcre2-8.
/usr/1ib64/libpcre2-8.
/usr/1ib64/libpcre2-8.
/usr/1ib64/libpcre2-8.

/usr/11ib64/1ibc. so.
/usr/1ib64/1ibc. so.
/usr/11ib64/1ibc. so.
/usr/1ib64/libc. so.
/usr/1ib64/1ibc. so.

o) o) o) o) o))

/usr/1ib64/1ibgpm.so.2.1.
/usr/1ib64/1ibgpm.so.2.1.
/usr/1ib64/1ibgpm.so.2.1.
/usr/1ib64/1ibgpm.so.2.1.
/usr/1ib64/1libgpm.so.2.1.

NNNNN
R R R R
OO0 00

(SIS S B RO

86

Hardware-enforced Memory Access Configuration

* Memory access permissions, e.g., read/write/executable,
checked and enforced by hardware

* Two primary types:
> Memory Management Unit (MMU)
- Supports virtual address

- Mainly for general-purpose computing systems, such as desktops/smartphones

> Memory Protection Unit (MPU)

- Flat address space—no virtual address
- Mainly for low-end embedded systems

87

Memory Management Unit (MMU)

* A hardware unit that manages memory
> Translating virtual addresses to physical addresses
> Examining memory access permissions (memory protection)
> Also known as paged MMU
- Memory managed in fixed-size blocks called pages

CPU physical memory

casing physical address #1

physical address #2

hysical add #3
virtual address physical adaress

physical address

\ 4

bus

CPU: Central Processing Unit
MMU: Memory Management Unit
TLB: Translation lookaside buffer

883

Architecture of Modern Computers

89

Memory Page

* A page is a fixed-size block of memory, determined by OS + architecture

» 4 KB in Linux/AMDG64 by default; 2 MB for huge pages;1 GB for gigantic pages
» 16 KB in MacOS/AArch64; 2 MB for huge pages

* The smallest memory allocation unit requested by OS.
* All memory addresses in a page share the same properties.

90

Utilize MMU for Memory Isolation

* Inter-process memory isolation
* Intra-process memory isolation

91

Example: Separation between OS and Applications

Application 1 coe Application n

‘v 1
‘ Syscalls ‘

OS Kernel

* One OS domain (the kernel mode)

> Privileged: executed privileged instructions; set up virtual memory;
perform access control on resources; ...

* Multiple application domains

> Go through OS syscalls to request access to privileged operations
> Application domains are isolated by OS processes.

Isolation Between Processes

Process 1 Process 2 Process N
Stack

Stack StaCk
virtual Heap
memory Heap

Caogde Code
physical
memory

Virtual to physical memory mapping naturally creates
protection domains between processes.

Use Inter-process Isolation to Implement Intra-process Isolation

e Put different memory domains into different processes
* Use inter-process communication (IPC) for different domains to “talk”

Domain 1 Domain 1
Domain 2 + Domain 2
Code Code Code

* Pro: Strong isolation enforced by hardware
» Cons: Extremely high performance cost
* Must be very careful about the communication interface o

Page Table and Page Table Entries

* Page table is a data structure used by MMU to store mappings
between virtual and physical memory addresses.

* Page table entry (PTE) is an entry in a page table representing a page.

> Mapping from a virtual address to a physical page
> Other information about the page

95

Example: Intel x64 PTE That Maps a 4-KB Page

63|62...59| 58...52 51...M M-1...12 11..9 |8 |7|6|5]4 (32|10
P P[PJU[R

XDl PK Reserved Reserved PFN AVL GIA|IDIAICIW|/ |/ |P
T DITIS|W

e P: Present e G: Global

e R/W: Read/Write e AVL: Available for software to define

» PWT: Page-level write-through PFN: Physical frame number (physical address)
« PCD: Page-level cache disable < PK: Protection key (if supported)

* A: Accessed XD: execute-disable

e D: Dirty

96

Configure Page Table Entry to Isolate Memory

 With data guards, memory access “mem(rl) = r2” becomes

rl = dGuard(r1l)
mem(rl) = r2

 Alternative: Before mem(rl), set all memory domains outside
of r1 to unwritable.

> In *nix systems, use mprotect () syscall.

97

Configure Page Table Entry to Isolate Memory

 With data guards, memory access “mem(rl) = r2” becomes

rl = dGuard(r1l)
mem(rl) = r2

e Alternative: Before mem(rl), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.

> In *nix systems, use mprotect () syscall.

mprotect(protected_mem, PROT_NONE);
mem(rl) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

> Pros: Strong protection
» Cons: High performance penalty; introducing security hazards

98

Example: Intel x64 PTE That Maps a 4-KB Page

e-@ 58..52 | 51...M M-1...12 11.9 |8 |7|6|54 32|10
P PI[PJU[R

XDl PK Reserved Reserved PFN AVL G|IA|DIA|ICIW]|/ |/ |P
T DITI|IS| X

e P: Present e (G: Global

e R/W: Read/Write e AVL: Available for software to define

» PWT. Page-level write-through PFN: Physical frame number (physical address)
« PCD: Page-level cache disable e PK: Protection key (if supported)

* A: Accessed XD: execute-disable

e D: Dirty

99

Intel Memory Protection Key (MPK)

* A protection key represents an access permission configuration.
> E.9., PK2 set to read-only, and PKS5 set to read + write

* Memory pages are divided into different groups.
* A group of pages are associated with a protection key.
* Supports up to 16 protections keys (bits 59-62 in PTE)

> |.e., 16 different protection domains

* Register pkru (Protection Key Rights for User Pages) for memory access checks
> 32-bit register
> Every two bits represents the memory access permission of one PK.

- first bit: Access Disabled (AD) when set to 1
- second bit: Write Disabled (WD) when set to 1

100

pkru Register

prku: |[PK15|PK14|PKi13 PK12...PK2 PK1 | PKO
Bits: 30 28 26 4 2 0

* £.9., aPTE’s has PK13, and PK13is 10
> Meaning this page of memory is set to be read-only
* E.g., a PIE’s has PK5, and PKS5 is 00
> Meaning this page of memory is set to be readable and writable

101

How to Manage MPK

 Use syscall pkey_mprotect()

int pkey_mprotect(void *addr, size t len, int prot, int pkey);

> Convenient, but slow (~1,100 CPU cycles)

* Directly manipulating pkru using the wrpkru instruction

> Allows a program to change the memory access permissions for selected PK
- eax contains the new PK value to be set

- ecx and edx must be O
> Fast (~23 CPU cycles)

e rdpkru is used to read PKs into eax.

102

Configure Page Table Entry to Isolate Memory

 With data guards, memory access “mem(rl) = r2” becomes

rl = dGuard(r1l)
mem(rl) = r2

e Alternative: Before mem(rl), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.

> In *nix systems, use mprotect () syscall.

mprotect(protected_mem, PROT_NONE);
mem(rl) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

> Pros: Strong protection
» Cons: High performance penalty; introducing security hazards

103

Example of Protecting Memory Domain with MPK

* Assume protected memory domain is associated with pk1l.
» For dangerous instruction “mem(rl) = r2”, it becomes

X0Or %ecx, %ecCX

xor %edx, %edx Anything vulnerable about this solution?

rdpkru

or %eax, 0x00000004 How to make sure your MPK gate instructions
wrpkru (those transitioning to/from a specific PK
mem(rl) = r2 configuration) are respected?

.. // recover original PKs
Check the optional readings for this lecture.

104

MPK Summary

* 16 protection keys; allowing 16 protection domains

* PK represented by bits 59 to 62 in a PTE

» pkru register is used to check memory access permissions.
« pkey_mprotect() syscall for managing PK

* rdpkru/wrpkru instructions are used to read/write pKru.

105

