
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to Gang Tan of PSU.

Outline

2

• Review: Testing and Fuzzing
• Software-based Memory Isolation
• Hardware-based Memory Isolation

Program Testing

3

The process of running a program on a set of test cases
and comparing the actual results with expected results.
• E.g., for the implementation of a factorial function, test cases

could be {0, 1, 5, 10}.
• Testing cannot guarantee program correctness.
‣ What’s the simplest program that can fool the test cases above?

• However, testing can catch many bugs.

Testing Process

4

Test oracle: A mechanism/tool that determines the correctness
of the tested program under a test case (input).

How to select test data?

Selecting Test Data

5

• Testing is w.r.t. a finite test set.
‣ Exhaustive testing is usually not possible

‣ E.g, a function takes 3 integer inputs, each ranging over 1 to 1000

- Assume each test takes 1 second
- Exhaustive testing would take 109 = 1 billion seconds (~31.7 years!)

• How should we design the test set?
‣ Black-box testing

‣ White-box (or, glass-box) testing

Black-box Testing

6

Generating test cases based on specification alone,
without considering the implementations (internals).
• Only focusing on the inputs and outputs

• Advantages
‣ No need for code knowledge

‣ Test cases are not biased toward an implementation.

White-box Testing

7

Looking into the internals of the program to figure out a
set of test cases

Boundary Conditions

8

• Common programming mistakes: not handling boundary cases
‣ Input is zero

‣ Input is negative

‣ Input is null

‣ …

• Test data should cover these boundary cases.

Test Coverage

9

• Idea: code that has not been covered by tests are likely to contain bugs.
‣ Divide a program into a set of elements

- The definition of elements leads to different kinds of test coverage.
‣ Define the coverage of a test suite to be:

of elements executed by the test suite
	 # of elements in total

Why is Test Coverage Important?

10

• Test quality is determined by the coverage of the program by the test set so far.

• Benefits:
‣ Can be used as a stopping rule: e.g., stop testing if 95% of elements

have been covered.
‣ Can be used as a metric: a test set that has a test coverage of 80% is

better than one that covers 70%
‣ Can be used in a test case generator: look for a test which exercises

new elements not covered by the tests so far

Possibly Infinite Number of Paths

11

• Loop may cause infinite # of paths
‣ In general, impossible to cover all of them.

• One heuristic
‣ Include test data that cover zero, one, and two iterations of a loop
‣ Why two iterations?

- A common programming mistake is failing to reinitialize data
in the second iteration.

‣ This offers no guarantee, but can catch many errors.

Combine Them All

12

• A good set of test data combines various testing strategies.
‣ Black-box testing

- Generating test cases by specifications

- Boundary conditions

‣ White-box testing
- Test coverage (e.g., being edge complete)

Fuzz Testing

13

Run programs on many random, abnormal inputs and
look for bad behaviors in the responses.
• Bad behaviors such as crashes or hangs

Input Run program

Fuzz Testing Overview

14

• Black-box fuzzing
‣ Treating the system as a black box during fuzzing, i.e., not knowing

details of the implementation
• White-box fuzzing
‣ Designing input generation with full knowledge of the target software

• Grey-box fuzzing
‣ Having partial knowledge of the internals of the target

Mutation-based Fuzzing

15

• User supplies a well-formed input.

• Fuzzing: Generate random changes to that input, i.e., mutating the input

• Seed inputs: A set of initial inputs

• Mutations: bit flipping, truncation, duplications, byte changes, etc.

• No assumption about input
‣ Only assumes that variants of well-formed input may be problematic

for the program
• Example: zzuf

– https://github.com/samhocevar/zzuf

https://github.com/samhocevar/zzuf

Generation-based Fuzzing

16

• Generate inputs from scratch according to predefined rules/specifications

• Generated inputs are well-formed, adhering to the specs

• Can write a generator to generate well-formatted inputs

• Suitable for inputs with a specific format requirement
‣ e.g., JSON/XML files, network traffic of certain protocols

Coverage-based Fuzzing

17

• Rather than treating the program as a black box, instrument the
program to track coverage
‣ E.g., the coverage of statements/edges/paths

• Uses feedback from the program’s execution to guide new input generation

• Maintain a pool of high-quality tests
1. Start with some initial ones (seeds) specified by users

2. Run tests and record the code coverage

3. Mutate tests in the pool to generate new tests

4. Run new tests
5. If a new test leads to new coverage (e.g., edges), save the new test
to the pool; otherwise, discard the new test

• Also called grey-box fuzzing

AFL

18

• Mutation-based, coverage-guided, grey-box fuzzer

• The original version is no longer maintained; afl++ is the newer version.

AFL Mutation Strategies

19

• Highly deterministic at first

• Then, non-deterministic choices

‣ bit flips

‣ adding/subtracting integer values

‣ Overwriting parts of the input with “interesting values” (e.g., INT_MAX)

‣ Replacing parts of the input with predefined or auto-detected values

‣ insertion/deletion bytes

‣ Overwriting with random values

‣ Others

Grey-box Fuzzing

20

• Finds flaws, but still does not understand the program
• Pros: Much more effective than black-box fuzzing
‣ Essentially no configurations

‣ Lots of crashes have been identified

• Cons: Still a bit of a stab in the dark
‣ Searches for inputs independently from the program

‣ May not be able to execute some paths

• Need to improve the effectiveness further

Memory Isolation

21

Architecture of Modern Computers

22

Input Output

Computing

Memory

How to ensure safety when sharing memory with untrusted programs?
How to ensure safety when sharing memory with untrusted components?

• Batch Processing
‣ Single User, Single Process, Single

Machine
• Submitted your code to the person who

ran your program on the machine
• Problem: Lots of idle time
‣ I/O waits
‣ Human/operational delays
‣ Debug/reseting cycles

23

In the Beginning Days

• Each program has a “share” of the CPU time

• The program has the impression of the only program.

‣ Each process is sharing the computer resources.

‣ Swapping in and out when share is up or waiting on other resources

‣ Appearance of concurrently running process

24

• Problem: How to maintain isolation between programs?

Time Sharing System

Shadow Stack for Return Address Integrity

25

A separate stack dedicated to storing a copy of each return address
• A program can use the return address on the shadow stack
‣ Checking the validity of the original return address

‣ Directly using the copy on the shadow stack to return

Regular Stack

low address

high address

Shadow Stack

Weaknesses of Shadow Stack for Return Addresses

26

• Integrity of shadow stack itself
‣ Shadow stack protects return addresses, who protects the shadow stack?

• Increased complexity due to additional abstraction
‣ Increasing the complexity of the protected software

‣ Performance and memory overhead

‣ New security risks

• Limited scope of protection

Principles for Building Secure Software Systems

27

• Isolation

• Least Privilege

• Fault Compartmentalization

• Trust and Correctness

Principle: Isolation

28

Isolate two components from each other

• One component cannot access data/code of the other component

except through a well-defined API

Isolation incurs overhead due to switching cost between components.

User-space application may only access the disk through the filesystem
API (i.e., the OS prohibits direct block access to raw data). The OS
isolates the user-space process from the disk.

Isolation via Protection Domains

29

• A fundamental idea in computer security
‣ [Lampson 74] “Protection”: https://dl.acm.org/doi/pdf/10.1145/775265.775268

• Structure a computer system to have multiple protection domains
‣ Each domain is given a set of privileges, according to its trustworthiness

https://dl.acm.org/doi/pdf/10.1145/775265.775268

Example: Separation between OS and Applications

30

• One OS domain (the kernel mode)
‣ Privileged: executed privileged instructions; set up virtual memory;

perform access control on resources; …
• Multiple application domains
‣ Go through OS syscalls to request access to privileged operations

‣ Application domains are isolated by the OS.

Isolating Untrusted Components

31

• Using separate protection domains is a natural choice for
isolating untrusted components.
‣ E.g., isolating plug-ins in a web browser

- Malfunctioning/malicious plug-ins would not crash or violate the
security of the browser.

‣ E.g., isolating device drivers in an OS

Many Forms of Protection Domains

32

• Hardware-based virtualization: Each domain in a virtual machine
‣ Pros: high degree of isolation

‣ Cons: extremely high overhead when context switching between domains

• OS processes: each domain in a separate OS process
‣ Pros: easy to use; strong isolation

‣ Cons: high context-switch overhead

• Language-based isolation: rely on languages features such as types
‣ Pros: fine-grained, portable, flexible, low overhead

‣ Cons: high engineering effort to use languages/features

Software-based Fault Isolation (SFI)

33

• Introduced by [Wahbe et al. 93] for MIPS
‣ [McCamant & Morrisett 06] extended it to x86

‣ [PNaCl] Google implemented SFI for ARM, ADM64, & MIPS for Chrome

• SFI is within the the same process address space
‣ One type of intra-address space isolation

‣ Each protection domain has a designated memory region.

‣ Same process: avoiding costly context switches

• Implementation by inserting software checks before critical instructions
‣ E.g., memory reads/writes, indirect branches

• Pros: Fine-grained, flexible, low context-switch overhead
• Cons: May require compiler support and software engineering effort

SFI Sandbox Setup

34

• Data region (DR): [DB, DL]
‣ Hold data: stack, heap, global

• Code region (DR): [CB, CL]
‣ Hold code

• Safe external (SE) addresses
‣ Host trusted services that require higher privileges
‣ Code can jump to them for accessing resources.

‣ Code can safely transition out of the current domain.

• DR, CR, and SE are disjoint.

SFI Policy

35

Implications of the SFI Policy

36

• Non-writable code
‣ All memory writes must write to DR.
‣ Code region cannot be modified.

- No self-modifying code
• Non-executable data

- Code injection disallowed

‣ Control flow cannot transfer to the data region
‣ Cannot inject data to DR and execute it as code

Stronger SFI Policies

37

• An SFI might implement a stronger/more restrictive policy
‣ For implementation convenience

‣ For fine-grained safety

‣ For efficiency

• E.g., PittSFIeld [McCamant & Morrisett 06]
‣ Disallow jumping into the middle of instructions on x86,

which has variable-sized instructions
• E.g., NaCl [Yee et al. 09]
‣ Disallow system call instructions in the code region

SFI Enforcement Overview

38

• Dangerous instructions: memory reads/writes, control-transfer instructions
‣ They have the potential of violating the SFI policy.

• SFI enforcement
‣ Check every dangerous instruction to ensure it obeys the policy

• Two general enforcement strategies
‣ Dynamic binary translation

‣ Inlined reference monitors

Dynamic Binary Translation (DBT)

39

• No need to modify program’s code ahead of time

• Flexible and adaptable to the running environment
• For a dangerous instruction, the interpreter checks

if it is safe according to the policy
• High runtime overhead

• Complex to implement

• Writable code region is generally more dangerous.

Translates binary code at execution time

• Commonly used in virtualization and instruction emulation.

Inlined Reference Monitors (IRM)

40

• A static program rewriter
‣ Inlines checks into the target program

• More efficient
‣ No dynamic translation costs

‣ Can optimize checks via static analysis

• More trustworthy
‣ A separate verifier can check that checks are inlined correctly.

Strategies for Implementing IRM Rewriters

41

• Binary rewriting
‣ Input: binary code

‣ Steps: perform disassembly; insert checks; assembly the instrumented code

‣ Pros: not requiring source code

‣ Cons: hard to disassemble and analyze stripped binaries

• Inside a compiler
‣ Input: source or IR code

‣ Steps: compiler inlining checks before generating binary code
‣ Pros: can perform more optimizations on checks with richer

information about code, e.g. types
‣ Cons: need source or IR code

Example

42

• r1 is a pointer to the beginning of an array

• r2 holds the array’s length

• The program computes in r5 the sum of the array items.

int *end = arr + len * 4;
int sum = 0;
while (arr < end) {
 sum += *arr;
 arr++;
}

Naive Enforcement

43

• Insert checks before memory reads/writes

Assume we want to ensure memory access is

contained in data region, we need to insert checks

before this memory access:

if r3 < DB goto error
if r3 > DL goto error

Naive Enforcement

44

• Sufficient for security requirement for isolation

• Has a high runtime overhead
‣ Two checks per memory access

• A practical SFI needs to implement optimizations to drive down the cost.
‣ E.g., remove redundant checks

Optimization: Integrity-only Isolation

45

• A program performs many more reads than writes.
‣ In SPEC2006, 50% instructions perform some memory reads or writes;

only 10% perform memory writes [Jaleel 2010]
• For integrity, check only memory writes

• Sufficient when confidentiality is not needed or less of a concern.
• Much more efficient
‣ [Wahbe et al. 1993] on MIPS using typical C benchmarks

- 22% execution overhead when checking both reads and writes;
4% when checking only writes

‣ PittSFIeld on x32 using SPECint2K
- 21% execution overhead when checking both reads and writes;

13% when checking only writes

Jaleel 2010: https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

Optimization: Data Region Specialization

46

• Special bit patterns for addresses in DR
‣ To make address checks more efficient
• One idea in the original SFI [Wahbe et al. 1993]
‣ Data region addresses have the same upper bits, which are called the

data region ID.
‣ Only one check is needed: check whether an address has the right

region ID.

Optimization: Data Region Specialization

47

• Example: DB = 0x12340000 ; DL = 0x1234FFFF
‣ The data region ID is 0x1234
• r6 = mem(r3) becomes

r10 = r3 >> 16 // right shift 16 bits to get the region id

if r10 != 0x1234 goto error

r6 = mem(r3)

Optimization: Address Masking

48

• Address checking stops the program when the check fails
‣ Strictly speaking, unnecessary for isolating faults

Software-based Fault Isolation (SFI)

49

• Introduced by [Wahbe et al. 93] for MIPS
‣ [McCamant & Morrisett 06] extended it to x86

‣ [PNaCl] Google implemented SFI for ARM, ADM64, & MIPS for Chrome

• SFI is within the the same process address space
‣ One type of intra-address space isolation

‣ Each protection domain has a designated memory region.

‣ Same process: avoiding costly context switches

• Implementation by inserting software checks before critical instructions
‣ E.g., memory reads/writes, indirect branches

• Pros: Fine-grained, flexible, low context-switch overhead
• Cons: May require compiler support and software engineering effort

Optimization: Address Masking

50

• Address checking stops the program when the check fails
‣ Strictly speaking, unnecessary for isolating faults

• A more efficient way: force the address of a memory operation to be
a DR address and continue execution
‣ Called address masking
‣ “Ensure, but don’t check.”

- When using data region specialization, just modify the upper bits in the
address to be the region ID

- PittSFIeld reported 12% performance gain when using address masking
instead of checking for SPECint2000

Optimization: Address Masking

51

‣ The data region ID is 0x1234

Anything suspicious/questionable?

r3 = r3 & 0x0000FFFF // bit-mask to clear the first 16 bits

r3 = r3 | 0x12340000 // bit-mask to set the first 16 bits to 0x1234

r6 = mem(r3)

• r6 = mem(r3) becomes

• Example: DB = 0x12340000 ; DL = 0x1234FFFF

• Instead of

r10 = r3 >> 16 // right shift 16 bits to get the region id

if r10 != 0x1234 goto error

r6 = mem(r3)

Wait! What about Program Semantics?

52

• “Good” programs will not get affected.
‣ “Good” programs will not access memory outside DR.

‣ For bad programs, we don’t care about whether its semantics get destroyed.

• Cons: Does not pinpoint the policy-violating instructions.
‣ A downside for debugging and assigning blame

Optimization: One-instruction Address Masking

53

• Idea
‣ The data region ID has only a single bit on.

‣ Mark the zero-ID region unmapped in the address space

• A memory access is safe
‣ if an address is either in the data region or in the zero-ID region
‣ an access to the zero-ID region generates a hardware trap because

it accesses unmapped memory
• Benefit: Cutting down one instruction for masking
‣ PittSFIeld reported 10% performance gain on SPECint2000

Optimization: One-instruction Address Masking

54

• Example: DB = 0x20000000 ; DL = 0x2000FFFF
‣ The data region ID is 0x2000

r3 = r3 & 0x2000FFFF // bit-mask to set the region ID

r6 = mem(r3)

• r6 = mem(r3) becomes

• Result is an address in DR or in the unmapped zero-ID region.

• Cons: Limit the number of domains
‣ In a 32-bit system, if a DR’s size is 2n, then we can have at most
32-n fault domains.

Data Guards

55

• A data guard refers to either address checking or address masking.
‣ When which one is used is irrelevant.

• Introduce a pseudo-instruction “r’=dGuard(r)”
‣ To hide implementation details

• An implementation should satisfy the following properties of r’=dGuard(r)”
‣ If r is in DR, then r’ should equal r

‣ If r is outside DR, then

- For address checking, an error state is reached.

- For address masking, r’gets an address within the safe range
- The safe range is implementation specific; it’s often DR.

Shadow Stack for Return Address Integrity

56

A separate stack dedicated to storing a copy of each return address
• A program can use the return address on the shadow stack
‣ Checking the validity of the original return address

‣ Directly using the copy on the shadow stack to return

Regular Stack

low address

high address

Shadow Stack

Regular Stack

low address

high address

Shadow Stack

Guard Zone

Optimization: Guard Zone/Page

57

• Place a guard zone before/after a data region.

• Guard zones are unmapped or not readable/writable.
‣ Access to guard zones are trapped by hardware.

• Assume Guard Zone’s size is GSize, a memory read/
write is safe if the address is in [DB-GSize, DL+GSize].

• Also called red zone

Guard Zones Enable More Optimizations

58

• In-place sandboxing

• Redundant check elimination

• Loop check hoisting

Optimization: In-place Sandboxing

59

• A commonly used addressing mode in memory operations
‣ A base register plus/minus a small constant offset
‣ E.g., the register points to the start address of a struct, and

the constant is the offset to a field.
• In this case, just guard the base register in place is

sufficient, when the constant is no greater than GSize.

Optimization: In-place Sandboxing

60

• Why is the above safe?
‣ “r3 := dGuard(r3)” constrains r3 to be in DR and then r3+12

must be in [DB-GSize, DL+GSize], assuming GSize ≥ 12.

• Example: r6 = mem(r3 + 12) becomes

r3 = dGuard(r3)

r6 = mem(r3 + 12)

Optimization: In-place Sandboxing

61

• NaCl-x86-64 (Sehr et al., 2010) implemented a similar optimization.

• Put guard zones of 40GB above and below a 4GB sandbox
‣ 64-bit machines have a large virtual address space
‣ As a result, most addresses in memory operations can be.

guaranteed to stay in [DB-GSize, DL+GSize].

Optimization: Redundant Check Elimination

62

• Idea: perform range analysis to know the range of values of registers
and use that to remove redundant data guards

Optimization: Loop Check Hoisting

63

• Idea: A guard in a loop is hoisted outside of the loop.
‣ The guard is performed only once per loop instead of once

per loop iteration.
• Key observation
‣ If addr ∈ [DB-GSize, DL+GSize], then a successful (untrapped)

memory operation via addr means addr ∈ [DB, DL].

Loop Check Hoisting Example

64

Why is the Optimized Code Safe?

65

Optimization: Guard Changes Instead of Uses

66

• Some registers are changed rarely but used often.
‣ E.g., in 32-bit code, ebp is usually set in the function prologue and

used often in the function body.
• Sandbox the changes to those special registers, instead of uses
‣ E.g., ebp = esp becomes

ebp = esp
ebp = dGuard(ebp)

‣ Later uses of %ebp plus a small constant do not need to be
guarded, if used together with guard zones.

Optimization: Data Region Specialization

67

• Example: DB = 0x12340000; DL = 0x1234FFFF
‣ The data region ID is 0x1234
• r6 = mem(r3) becomes

r10 = r3 >> 16 // right shift 16 bits to get the region id

if r10 != 0x1234 goto error

r6 = mem(r3)

r10 is a scratch register

Scratch Registers

68

• The SFI rewriting may require finding scratch registers to store
intermediate results.

• If the old values of scratch registers need to be used later, we need to
save and restore the old values on the stack.

• How to avoid that?

Optimization: Finding Scratch Registers

69

• Binary rewriting

• Compile-level rewriting
‣ Perform binary-level liveness analysis to find dead registers as scratch registers.

‣ Approach 1: Reserve dedicated registers as scratch registers
- E.g., PittSFIeld reserves ebx as the scratch register by passing GCC a special option.

- Downside: increase register pressure

‣ Approach 2: Rewrite at the level of an IR that has an unlimited number of
virtual registers.
- E.g. LLVM IR

- A later register allocation phase maps those variables to registers or stack slots.

Anything Vulnerable about This Program?

70

What if a control flow hijacking (e.g., by corrupting an
return address) causes the control flow to jump over
dGuard and directly go to the memory access?

Risk of Indirect Branches

71

• In general, any indirect branch might cause such a worry.
‣ If not carefully checked, it may bypass the guard.

• Indirect branches include
‣ Indirect calls (calls via register or memory operands)

‣ Indirect jumps (jumps via register or memory operands)

‣ Return instructions

CFI is often needed for other security
policies such as SFI.

72

How to Enforce Control-flow Integrity

73

• Compute a CFG

• For indirect control flow transfers, compute their target destinations

‣ Mostly via compiler or binary rewriting, but possible at run-time

• Before an indirect transfer, check the validity of the destination

• Two CFI policies:

‣ Label-based and type-based

Label-based CFI

74

• Assign and insert a label (ID) before each indirect transfer destination

• Before executing an indirect transfer, check the destination’s label

Indirect forward transfer
Direct forward transfer

Backward transfer

‣ Similar to using stack canaries / shadow stacks

Example of Label-based CFI

75

CFI instrumentation CFI instrumentation

Align-chunk Enforcement

76

• Divide the code into chunks of some size
‣ E.g., 16 or 32 bytes

• Each chunk starts at an aligned address
‣ So we can force an address to align by chunkSize with “addr / chunkSize”

• Make dangerous instructions and their guards stay within one chunk.
‣ E.g., “r10 := dGuard(r10); mem(r10) := r2” stay within one chunk

• Insert guards before indirect branches so that they target only aligned
addresses (chunk beginnings)

Example of Align-chunk Enforcement

77

• Assume
‣ CR is [0x10000000, 0x1000FFFF]; code region ID is 0x1000
‣ Chunk size is 16 bytes.

‣ Zero-ID region [0x00000000, 0x0000FFFF] unmapped

• Then, “jmp rax” becomes
rax = rax & 0x1000FFF0
jmp rax

• Ensures that the target address is
‣ in CR or zero-ID region

- after &, r’s upper 16 bits must be either 0x0000 or 0x1000
‣ a chunk beginning

- after &, r’s lower four bits must all be 0, meaning it’s 16-byte aligned

Downside of Align-chunk Enforcement

78

• All legitimate jump targets have to be aligned.
‣ No-ops have to be inserted for that.

• E.g., assuming a 16-byte chunk, and each instruction is 4-byte long.

r1 = mem (r2)
r3 = mem (r4)

r2 = dGuard(r2)
r1 = mem (r2)
r4 = dGuard(r4)
r3 = mem (r4)

r2 = dGuard(r2)
r1 = mem (r2)
nop
nop

r4 = dGuard(r4)
r3 = mem (r4)
…

chunk boundary

Downside of Align-chunk Enforcement

79

• Extra no-ops slow down execution and increase code size
‣ In PittSFIeld, inserted no-ops account for half of the runtime overhead;

NaCl-JIT incurs 37% slowdown because of no-ops.
‣ In NaCl-x64, the code size becomes 60% larger.

• All legitimate jump targets have to be aligned.
‣ No-ops have to be inserted for that.

SFI Applications

80

• Isolating OS kernel modules such as device drivers
‣ MiSFIT [Small 97]; XFI [Erlingsson et al. 06]; BGI [Castro et al. 09];

LXFI [Mao et al. 11]
• Isolating plug-ins in Chrome
‣ NaCl [Yee et al. 09]; NaCl-x64 [Sehr et al. 10]

• Isolating native libraries in the Java Virtual Machine
‣ Robusta [Siefers et al. 10]; Arabica[Sun & Tan 12]

Google’s Native Client (NaCl & PNaCl)

81

• SFI service in Chrome
• Goal: download native code and run it safely in the Chrome browser

• Google’s main motivation: run native-code games in Chrome

‣ Much safer than ActiveX controls
‣ Much better performance than JavaScript, Java, etc.

• Replaced by WebAssembly in 2017

NaCl: Code Verification

82

• Code is verified before running
‣ Allow a restricted subset of x86 instructions

- No unsafe instructions: privileged instructions,
modifications of segment state, …

‣ Ensure SFI checks are correctly implemented for the SFI policy.

NaCl Sandboxing

83

• x86-32 sandboxing based on hardware segments
‣ Sandboxing reads and writes for free
‣ 5% overhead for SPEC2000 benchmarks

• However, hardware segments not available in x86-64 or ARM
‣ Use instructions for address masking [Sehr et al. 10]
‣ x86-64/ARM: 20% for sandboxing memory writes and computed jumps

SFI Review

84

• SFI policy: data-access policy; control-flow policy

• SFI enforcement: inlined reference monitoring (IRM)

• Enforcing data-access policy
‣ Naïve enforcement and optimizations for the data-access policy

- Data masking; guard zones; …
• Enforcing control-flow policy
‣ Additional constraints: must prevent checks from being bypassed;

must prevent jumping into middles of instructions

Hardware-assisted Memory Isolation

85

Memory Mapping of vim

86

How is the memory access permission enforced?

Hardware-enforced Memory Access Configuration

87

• Memory access permissions, e.g., read/write/executable,
checked and enforced by hardware

• Two primary types:
‣ Memory Management Unit (MMU)

‣ Memory Protection Unit (MPU)
- Flat address space—no virtual address

- Mainly for low-end embedded systems

- Supports virtual address

- Mainly for general-purpose computing systems, such as desktops/smartphones

Memory Management Unit (MMU)

88

• A hardware unit that manages memory
‣ Translating virtual addresses to physical addresses

‣ Examining memory access permissions (memory protection)

‣ Also known as paged MMU

- Memory managed in fixed-size blocks called pages

Architecture of Modern Computers

89

Input Output

Computing

Memory

Memory Page

90

• A page is a fixed-size block of memory, determined by OS + architecture

• The smallest memory allocation unit requested by OS.

• All memory addresses in a page share the same properties.

‣ 4 KB in Linux/AMD64 by default; 2 MB for huge pages;1 GB for gigantic pages

‣ 16 KB in MacOS/AArch64; 2 MB for huge pages

Utilize MMU for Memory Isolation

91

• Inter-process memory isolation

• Intra-process memory isolation

Example: Separation between OS and Applications

92

• One OS domain (the kernel mode)
‣ Privileged: executed privileged instructions; set up virtual memory;

perform access control on resources; …
• Multiple application domains
‣ Go through OS syscalls to request access to privileged operations

‣ Application domains are isolated by OS processes.

Heap

Isolation Between Processes

93

Stack

Code

Heap

Stack

Code

Heap

Stack

Code

Process 1 Process 2 Process N

……virtual
memory

physical
memory

Virtual to physical memory mapping naturally creates
protection domains between processes.

Use Inter-process Isolation to Implement Intra-process Isolation

94

• Put different memory domains into different processes

• Use inter-process communication (IPC) for different domains to “talk”

Domain 2

Domain 1

Code

Domain 1

Code

Domain 2

Code

• Pro: Strong isolation enforced by hardware
• Cons: Extremely high performance cost
• Must be very careful about the communication interface

Page Table and Page Table Entries

95

• Page table is a data structure used by MMU to store mappings
between virtual and physical memory addresses.

• Page table entry (PTE) is an entry in a page table representing a page.
‣ Mapping from a virtual address to a physical page

‣ Other information about the page

Example: Intel x64 PTE That Maps a 4-KB Page

96

0

P

1
R
/
W

234567811…9
U
/
S

P
W
T

P
C
D

ADG

M-1…1263 62…59

PKXD

58…52

Reserved

51…M

Reserved PFN
P
A
T

• P: Present

• R/W: Read/Write

• PWT: Page-level write-through

• PCD: Page-level cache disable

• A: Accessed

• D: Dirty

AVL

• G: Global

• AVL: Available for software to define

• PFN: Physical frame number (physical address)

• PK: Protection key (if supported)

• XD: execute-disable

Configure Page Table Entry to Isolate Memory

97

r1 = dGuard(r1)
mem(r1) = r2

• With data guards, memory access “mem(r1) = r2” becomes

• Alternative: Before mem(r1), set all memory domains outside
of r1 to unwritable.
‣ In *nix systems, use mprotect() syscall.

Configure Page Table Entry to Isolate Memory

98

r1 = dGuard(r1)
mem(r1) = r2

• With data guards, memory access “mem(r1) = r2” becomes

• Alternative: Before mem(r1), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.
‣ In *nix systems, use mprotect() syscall.

‣ Pros: Strong protection
‣ Cons: High performance penalty; introducing security hazards

mprotect(protected_mem, PROT_NONE);
mem(r1) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

Example: Intel x64 PTE That Maps a 4-KB Page

99

0

P

1
R
/
X

234567811…9
U
/
S

P
W
T

P
C
D

ADG

M-1…1263 62…59

PKXD

58…52

Reserved

51…M

Reserved PFN
P
A
T

• P: Present

• R/W: Read/Write

• PWT: Page-level write-through

• PCD: Page-level cache disable

• A: Accessed

• D: Dirty

AVL

• G: Global

• AVL: Available for software to define

• PFN: Physical frame number (physical address)

• PK: Protection key (if supported)
• XD: execute-disable

Intel Memory Protection Key (MPK)

100

• Memory pages are divided into different groups.

• A group of pages are associated with a protection key.

• Supports up to 16 protections keys (bits 59–62 in PTE)
‣ I.e., 16 different protection domains

• A protection key represents an access permission configuration.
‣ E.g., PK2 set to read-only, and PK5 set to read + write

• Register pkru (Protection Key Rights for User Pages) for memory access checks
‣ 32-bit register

‣ Every two bits represents the memory access permission of one PK.

- first bit: Access Disabled (AD) when set to 1

- second bit: Write Disabled (WD) when set to 1

pkru Register

101

PK15 PK14 PK13 PK1PK12…PK2 PK0
024262830Bits:

prku:

• E.g., a PTE’s has PK13, and PK13 is 10
‣ Meaning this page of memory is set to be read-only

• E.g., a PTE’s has PK5, and PK5 is 00
‣ Meaning this page of memory is set to be readable and writable

How to Manage MPK

102

• Use syscall pkey_mprotect()
int pkey_mprotect(void *addr, size_t len, int prot, int pkey);

‣ Convenient, but slow (~1,100 CPU cycles)

• Directly manipulating pkru using the wrpkru instruction

‣ Fast (~23 CPU cycles)

‣ Allows a program to change the memory access permissions for selected PK
- eax contains the new PK value to be set

- ecx and edx must be 0

• rdpkru is used to read PKs into eax.

Configure Page Table Entry to Isolate Memory

103

r1 = dGuard(r1)
mem(r1) = r2

• With data guards, memory access “mem(r1) = r2” becomes

• Alternative: Before mem(r1), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.
‣ In *nix systems, use mprotect() syscall.

‣ Pros: Strong protection
‣ Cons: High performance penalty; introducing security hazards

mprotect(protected_mem, PROT_NONE);
mem(r1) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

Example of Protecting Memory Domain with MPK

104

• Assume protected memory domain is associated with pk1.

• For dangerous instruction “mem(r1) = r2”, it becomes

xor %ecx, %ecx
xor %edx, %edx
rdpkru
or %eax, 0x00000004
wrpkru
mem(r1) = r2
… // recover original PKs

Anything vulnerable about this solution?

How to make sure your MPK gate instructions
(those transitioning to/from a specific PK
configuration) are respected?

Check the optional readings for this lecture.

MPK Summary

105

• 16 protection keys; allowing 16 protection domains

• PK represented by bits 59 to 62 in a PTE

• pkru register is used to check memory access permissions.

• pkey_mprotect() syscall for managing PK

• rdpkru/wrpkru instructions are used to read/write pkru.

