
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to John Criswell of The University of Rochester.

Outline

2

• Review: Isolation
• Least Privilege Principle
• Software Compartmentalization

Architecture of Modern Computers

3

Input Output

Computing

Memory

How to ensure safety when sharing memory with untrusted programs?
How to ensure safety when sharing memory with untrusted components?

Principle: Isolation

4

Isolate two components from each other

• One component cannot access data/code of the other component

except through a well-defined API

Isolation incurs overhead due to switching cost between components.

User-space application may only access the disk through the filesystem
API (i.e., the OS prohibits direct block access to raw data). The OS
isolates the user-space process from the disk.

Software-based Fault Isolation (SFI)

5

• Introduced by [Wahbe et al. 93] for MIPS
‣ [McCamant & Morrisett 06] extended it to x86

‣ [PNaCl] Google implemented SFI for ARM, ADM64, & MIPS for Chrome

• SFI is within the the same process address space
‣ One type of intra-address space isolation

‣ Each protection domain has a designated memory region.

‣ Same process: avoiding costly context switches

• Implementation by inserting software checks before critical instructions
‣ E.g., memory reads/writes, indirect branches

• Pros: Fine-grained, flexible, low context-switch overhead
• Cons: May require compiler support and software engineering effort

SFI Sandbox Setup

6

• Data region (DR): [DB, DL]
‣ Hold data: stack, heap, global

• Code region (DR): [CB, CL]
‣ Hold code

• Safe external (SE) addresses
‣ Host trusted services that require higher privileges
‣ Code can jump to them for accessing resources.

‣ Code can safely transition out of the current domain.

• DR, CR, and SE are disjoint.

SFI Policy

7

SFI Enforcement Overview

8

• Dangerous instructions: memory reads/writes, control-transfer instructions
‣ They have the potential of violating the SFI policy.

• SFI enforcement
‣ Check every dangerous instruction to ensure it obeys the policy

• Two general enforcement strategies
‣ Dynamic binary translation

‣ Inlined reference monitors

Example

9

• r1 is a pointer to the beginning of an array

• r2 holds the array’s length

• The program computes in r5 the sum of the array items.

int *end = arr + len * 4;
int sum = 0;
while (arr < end) {
 sum += *arr;
 arr++;
}

Optimization: Integrity-only Isolation

10

• A program performs many more reads than writes.
‣ In SPEC2006, 50% instructions perform some memory reads or writes;

only 10% perform memory writes [Jaleel 2010]
• For integrity, check only memory writes

• Sufficient when confidentiality is not needed or less of a concern.
• Much more efficient
‣ [Wahbe et al. 1993] on MIPS using typical C benchmarks

- 22% execution overhead when checking both reads and writes;
4% when checking only writes

‣ PittSFIeld on x32 using SPECint2K
- 21% execution overhead when checking both reads and writes;

13% when checking only writes

Jaleel 2010: https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf

Optimization: Data Region Specialization

11

• Example: DB = 0x12340000 ; DL = 0x1234FFFF
‣ The data region ID is 0x1234
• r6 = mem(r3) becomes

r10 = r3 >> 16 // right shift 16 bits to get the region id

if r10 != 0x1234 goto error

r6 = mem(r3)

Optimization: Address Masking

12

• Address checking stops the program when the check fails
‣ Strictly speaking, unnecessary for isolating faults

• A more efficient way: force the address of a memory operation to be
a DR address and continue execution
‣ Called address masking
‣ “Ensure, but don’t check.”

- When using data region specialization, just modify the upper bits in the
address to be the region ID

- PittSFIeld reported 12% performance gain when using address masking
instead of checking for SPECint2000

Optimization: Address Masking

13

‣ The data region ID is 0x1234

r3 = r3 & 0x0000FFFF // bit-mask to clear the first 16 bits

r3 = r3 | 0x12340000 // bit-mask to set the first 16 bits to 0x1234

r6 = mem(r3)

• r6 = mem(r3) becomes

• Example: DB = 0x12340000 ; DL = 0x1234FFFF

• Instead of

r10 = r3 >> 16 // right shift 16 bits to get the region id

if r10 != 0x1234 goto error

r6 = mem(r3)

Data Guards

14

• A data guard refers to either address checking or address masking.
‣ When which one is used is irrelevant.

• Introduce a pseudo-instruction “r’=dGuard(r)”
‣ To hide implementation details

• An implementation should satisfy the following properties of r’=dGuard(r)”
‣ If r is in DR, then r’ should equal r

‣ If r is outside DR, then

- For address checking, an error state is reached.

- For address masking, r’gets an address within the safe range
- The safe range is implementation specific; it’s often DR.

Guard Zones Enable More Optimizations

15

• In-place sandboxing

• Redundant check elimination

• Loop check hoisting

Optimization: In-place Sandboxing

16

• Why is the above safe?
‣ “r3 := dGuard(r3)” constrains r3 to be in DR and then r3+12

must be in [DB-GSize, DL+GSize], assuming GSize ≥ 12.

• Example: r6 = mem(r3 + 12) becomes

r3 = dGuard(r3)

r6 = mem(r3 + 12)

Why is the Optimized Code Safe?

17

Optimization: Guard Changes Instead of Uses

18

• Some registers are changed rarely but used often.
‣ E.g., in 32-bit code, ebp is usually set in the function prologue and

used often in the function body.
• Sandbox the changes to those special registers, instead of uses
‣ E.g., ebp = esp becomes

ebp = esp
ebp = dGuard(ebp)

‣ Later uses of %ebp plus a small constant do not need to be
guarded, if used together with guard zones.

Anything Vulnerable about This Program?

19

What if a control flow hijacking (e.g., by corrupting an
return address) causes the control flow to jump over
dGuard and directly go to the memory access?

CFI is often needed for other security
policies such as SFI.

20

Align-chunk Enforcement

21

• Divide the code into chunks of some size
‣ E.g., 16 or 32 bytes

• Each chunk starts at an aligned address
‣ So we can force an address to align by chunkSize with “addr / chunkSize”

• Make dangerous instructions and their guards stay within one chunk.
‣ E.g., “r10 := dGuard(r10); mem(r10) := r2” stay within one chunk

• Insert guards before indirect branches so that they target only aligned
addresses (chunk beginnings)

Downside of Align-chunk Enforcement

22

• All legitimate jump targets have to be aligned.
‣ No-ops have to be inserted for that.

• E.g., assuming a 16-byte chunk, and each instruction is 4-byte long.

r1 = mem (r2)
r3 = mem (r4)

r2 = dGuard(r2)
r1 = mem (r2)
r4 = dGuard(r4)
r3 = mem (r4)

r2 = dGuard(r2)
r1 = mem (r2)
nop
nop

r4 = dGuard(r4)
r3 = mem (r4)
…

chunk boundary

Hardware-enforced Memory Access Configuration

23

• Memory access permissions, e.g., read/write/executable,
checked and enforced by hardware

• Two primary types:
‣ Memory Management Unit (MMU)

‣ Memory Protection Unit (MPU)
- Flat address space—no virtual address

- Mainly for low-end embedded systems

- Supports virtual address

- Mainly for general-purpose computing systems, such as desktops/smartphones

Example: Intel x64 PTE That Maps a 4-KB Page

24

0

P

1
R
/
W

234567811…9
U
/
S

P
W
T

P
C
D

ADG

M-1…1263 62…59

PKXD

58…52

Reserved

51…M

Reserved PFN
P
A
T

• P: Present

• R/W: Read/Write

• PWT: Page-level write-through

• PCD: Page-level cache disable

• A: Accessed

• D: Dirty

AVL

• G: Global

• AVL: Available for software to define

• PFN: Physical frame number (physical address)

• PK: Protection key (if supported)

• XD: execute-disable

Configure Page Table Entry to Isolate Memory

25

r1 = dGuard(r1)
mem(r1) = r2

• With data guards, memory access “mem(r1) = r2” becomes

• Alternative: Before mem(r1), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.
‣ In *nix systems, use mprotect() syscall.

‣ Pros: Strong protection
‣ Cons: High performance penalty; introducing security hazards

mprotect(protected_mem, PROT_NONE);
mem(r1) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

Example: Intel x64 PTE That Maps a 4-KB Page

26

0

P

1
R
/
X

234567811…9
U
/
S

P
W
T

P
C
D

ADG

M-1…1263 62…59

PKXD

58…52

Reserved

51…M

Reserved PFN
P
A
T

• P: Present

• R/W: Read/Write

• PWT: Page-level write-through

• PCD: Page-level cache disable

• A: Accessed

• D: Dirty

AVL

• G: Global

• AVL: Available for software to define

• PFN: Physical frame number (physical address)

• PK: Protection key (if supported)
• XD: execute-disable

Intel Memory Protection Key (MPK)

27

• Memory pages are divided into different groups.

• A group of pages are associated with a protection key.

• Supports up to 16 protections keys (bits 59–62 in PTE)
‣ I.e., 16 different protection domains

• A protection key represents an access permission configuration.
‣ E.g., PK2 set to read-only, and PK5 set to read + write

• Register pkru (Protection Key Rights for User Pages) for memory access checks
‣ 32-bit register

‣ Every two bits represents the memory access permission of one PK.

- first bit: Access Disabled (AD) when set to 1

- second bit: Write Disabled (WD) when set to 1

pkru Register

28

PK15 PK14 PK13 PK1PK12…PK2 PK0
024262830Bits:

prku:

• E.g., a PTE’s has PK13, and PK13 is 10
‣ Meaning this page of memory is set to be read-only

• E.g., a PTE’s has PK5, and PK5 is 00
‣ Meaning this page of memory is set to be readable and writable

How to Manage MPK

29

• Use syscall pkey_mprotect()
int pkey_mprotect(void *addr, size_t len, int prot, int pkey);

‣ Convenient, but slow (~1,100 CPU cycles)

• Directly manipulating pkru using the wrpkru instruction

‣ Fast (~23 CPU cycles)

‣ Allows a program to change the memory access permissions for selected PK
- eax contains the new PK value to be set

- ecx and edx must be 0

• rdpkru is used to read PKs into eax.

Configure Page Table Entry to Isolate Memory

30

r1 = dGuard(r1)
mem(r1) = r2

• With data guards, memory access “mem(r1) = r2” becomes

• Alternative: Before mem(r1), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.
‣ In *nix systems, use mprotect() syscall.

‣ Pros: Strong protection
‣ Cons: High performance penalty; introducing security hazards

mprotect(protected_mem, PROT_NONE);
mem(r1) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

Example of Protecting Memory Domain with MPK

31

• Assume protected memory domain is associated with pk1.

• For dangerous instruction “mem(r1) = r2”, it becomes

xor %ecx, %ecx
xor %edx, %edx
rdpkru
or %eax, 0x00000004
wrpkru
mem(r1) = r2
… // recover original PKs

Anything vulnerable about this solution?

How to make sure your MPK gate instructions
(those transitioning to/from a specific PK
configuration) are respected?

Check the optional readings for this lecture.

Least Privilege Principle

32

Outline: Principle of Least Privilege

33

• What are privileges?
• What problems do current systems have with privileges?
• What can we do to more safely use privileges?

At a given point in time, what operations
are allowed on which object?

• All references by any program to objects (data, devices, etc.) are
validated against a policy.

Reference Monitor

35

• Subject
• Entity that wants to take an action
• Usually, the subject has been authenticated
• May be an unknown subject

Terminology

36

• Subject
• Action
• What the subject wants to do
• Read, write, execute
• Start, shutdown
• Debug (one process monitoring another)

Terminology

37

• Subject
• Action
• Object
• What item the subject wants to take the action on
• Memory
• Files and directories
• Services
• Devices

Terminology

38

• Subject
• Action
• Object
• Policy
• Defines what is allowed and what is not allowed
• Usually parameterized by (subject, action, object) triple

Terminology

39

• Subject
• Action
• Object
• Policy
• Reference Monitor
• Controls access to an object
• Only allows a subject to execute an action on an object 

if that action conforms with the policy

Terminology

40

• Access policy organized as a
matrix
• Rows indexed by subjects
• Columns indexed by objects

• Access Control Entry (ACE)
• Specifies access of Subject on a

given Object

41

Access Matrix

• Capability List
• For a given subject, what objects

and what permissions over those
objects
• A row of the Access Matrix

• Access Control List
• For a given object, which subjects

have access and what
permissions to that object
• A column of the Access Matrix

42

Access Control List / Capability List

Principle of Least Privilege

43

A component has the least privileges needed to function
• Any further removed privilege reduces functionality

• Any added privilege will not increase functionality (according to   the specifications)

Rendering in Chromium executes in an encapsulated sandbox where only
minimal system calls are allowed.

• This property constraints an attacker in the obtainable privileges.

Privileges

44

• Override (i.e., make exceptions to) access control rules

• Usually a thread or process attribute

Rules Are Made To Be Broken.

45

Why Do We Need Privileges?

46

• Real systems need “exceptions” to access control rules.
‣ Installing new software

‣ Change of policy

‣ Change of ownership

‣ Fix incorrect configurations

‣ Help users solve problems

Privilege Granularity

47

Coarse Grain Fine GrainMedium Grain

Coarse-grained Privileges

48

• All or nothing

• Effective UID of 0 (root) overrides all access controls.

What Can the Root User Do (Unix)?

49

• Open any file for reading

• Open any file for writing

• Write to any directory

• Change file’s owner

• Change file’s permission bits

• Change process UIDs to arbitrary values

• Send signals to any process

• Change the system time

• Bind socket to a privileged port

• Reboot the system

Depends on the OS. But in general, (almost) omnipotent.

Medium-grained Privileges (Linux)

50

• Named “capabilities” in the Linux documentation

• Kernel checks for privileges in process’s effective privilege set

• Kernel provides “hack” to mimic Unix access control
‣ Turns all privileges on when effective UID is root

‣ Turns all privileges off when effective UID is not root

‣ A process can disable this behavior using prctl()

• Linux kernel 6.17 uses 41 capabilities.
‣ “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)

Medium-grained Privileges (Linux)

51

Privilege Description

CAP_DAC_READSEARCH Override read permissions on files
Override search permissions on directories

CAP_DAC_OVERRIDE Override read, search, and write access on files and directories

CAP_CHOWN Change owner of files

CAP_SETUID Change real, effective, and saved UIDs to any value

Fine-grained Privileges (Argus PitBull)

52

PV_ROOT

PV_DAC

PV_MAC

PV_DAC_READ

PV_DAC_WRITE

PV_MAC_READ

PV_MAC_WRITE

• Separate privileges for overriding read, write, execute

• Separate privilege classes for overriding each type of access control (MAC and DAC)
• Hierarchical tree to make privileges easier to manage: Top privilege is

a superset of sub-tree.
• Root user is no longer a special user.

Outline: Principle of Least Privilege

53

• What are privileges?
• What problems do current systems have with privileges?
• What can we do to more safely use privileges?

Unneeded Privileges May Be Exploited
to Launch Attacks.

54

Turning Privileges On and Off

55

• Programs do not need all operations to be privileged.
‣ The program’s functionality may not need privileges.

- Use privilege to open password file

- Don’t use privilege to open user preferences file

• Follow Saltzer and Schroeder Principle of Least Privilege
‣ Programs using fewer privileges tend to have fewer vulnerabilities.

Enabling and Disabling Unix “Privilege”

56

Real UIDEffective
UID

root

Saved
UID

John Jim

• To disable root, swap EUID and SUID

• To enable root, swap EUID and SUID

Enabling and Disabling Unix “Privilege”

57

Real UIDEffective
UID

Jim

Saved
UID

John root

• To disable root, swap EUID and SUID

• To enable root, swap EUID and SUID

Enabling and Disabling Unix “Privilege”

58

Real UIDEffective
UID

root

Saved
UID

John Jim

• To disable root, swap EUID and SUID

• To enable root, swap EUID and SUID

Privilege Bracketing

59

Privileged
Execution

Non-privileged
Execution

vsTime

• Enable privileges before an privileged operation

• Disable privileges after the operation

Unix Privilege Bracketing: 1

60

0
setresuid(23, 0, 23);

open (“/dev/hd”);

setresuid(23, 23, 0);

Real UID

Effective
UID

23

Saved
UID

setresuid(23, 23, 0);

23

• setresuid() sets the real user ID, the effective user ID,
and the saved user ID of the calling process.

Unix Privilege Bracketing: 2

61

23
setresuid(23, 0, 23);

open (“/dev/hd”);

setresuid(23, 23, 0);

Real UID

Effective
UID

23

Saved
UID

setresuid(23, 23, 0);

0

• setresuid() sets the real user ID, the effective user ID,
and the saved set-user-ID of the calling process.

Unix Privilege Bracketing: 3

62

0
setresuid(23, 0, 23);

open (“/dev/hd”);

setresuid(23, 23, 0);

Real UID

Effective
UID

23

Saved
UID

setresuid(0, 23, 23);

23

• setresuid() sets the real user ID, the effective user ID,
and the saved set-user-ID of the calling process.

Unix Privilege Bracketing: 4

63

0
setresuid(23, 0, 23);

open (“/dev/hd”);

setresuid(23, 23, 0);

Real UID

Effective
UID

23

Saved
UID

setresuid(23, 23, 0);

23

• setresuid() sets the real user ID, the effective user ID,
and the saved set-user-ID of the calling process.

Unix Privilege Bracketing: 5

64

23
setresuid(23, 0, 23);

open (“/dev/hd”);

setresuid(23, 23, 0);

Real UID

Effective
UID

23

Saved
UID

setresuid(0, 23, 23);

0

• setresuid() sets the real user ID, the effective user ID,
and the saved set-user-ID of the calling process.

What if attackers turn on the root UID at unexpected points?

Privilege Bracketing

65

Privileged
Execution

Non-privileged
Execution

vsTime

• Enable privileges before an privileged operation

• Disable privileges after the operation

What if attackers set EUID to 0 here?

Outline: Principle of Least Privilege

66

• What are privileges?
• What problems do current systems have with privileges?
• What can we do to more safely use privileges?

How does it work on systems with
more than one privilege?

67

Medium-grained Privileges (Linux)

68

• Named “capabilities” in the Linux documentation

• Kernel checks for privileges in process’s effective privilege set

• Kernel provides “hack” to mimic Unix access control
‣ Turns all privileges on when effective UID is root

‣ Turns all privileges off when effective UID is not root

‣ A process can disable this behavior using prctl()

• Linux kernel 6.17 uses 41 capabilities.
‣ “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)

Process Privilege Sets

69

• Maximum privilege set: All allowed privileges

• Effective privilege set: Currently active privileges
‣ E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

‣ E.g., CAP_DAC_READSEARCH
• Process can add effective privilege if it is in maximum set.

• Process can remove privileges in maximum and effective.

Fine-grained Privilege Bracketing

70

Operations on Privilege Sets

71

Operation Description

priv_raise() Enable privileges in effective set

priv_lower() Disable privileges in effective set

priv_remove() Remove privileges in effective and permitted set

open (“/etc/passwd”, O_RDONLY);
priv_raise (CAP_DAC_READSEARCH);
open (“/etc/passwd”, O_RDONLY);
priv_lower(CAP_DAC_READSEARCH);

Unix Privilege Bracketing: 1

72

0
setresuid(23, 0, 23);

open (“/dev/hd”);

setresuid(23, 23, 0);

Real UID

Effective
UID

23

Saved
UID

setresuid(23, 23, 0);

23

• setresuid() sets the real user ID, the effective user ID,
and the saved user ID of the calling process.

Linux Privilege Bracketing

73

23
priv_raise(CAP_DAC_OVERRIDE)

open (“/dev/hd”);

priv_lower(CAP_DAC_OVERRIDE)

Real UID

Effective
UID

23

Saved
UID

prctl()

23

setresuid(23, 23, 23);

Anything vulnerable about this strategy?
What if priv_raise() is exploited by attackers?

How to remove privileges in Unix/Linux?

74

Process Privilege Sets

75

• Maximum privilege set: All allowed privileges

• Effective privilege set: Currently active privileges
‣ E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

‣ E.g., CAP_DAC_READSEARCH
• Process can add effective privilege if it is in maximum set.

• Process can remove privileges in maximum and effective.
• Challenge: Removing unneeded privileges at the earliest point.

Remove Privileges

76

• Unix
‣ Set EUID, RUID, and SUID to non-zero values

• Linux
‣ Remove privilege from effective and maximum set

Remove Privileges

77

int main() {

 foo();

}

void foo() {
 ...
 ... // use privilege P1
}

Insert priv_remove(P1) after P1 is no longer needed.

foo
P1

main

main

f3

f1
P1, P2

f2

f4
P3

f7
P2

f6

f5
P4

f8
P1

f11
P4

f9

f10
P3

f12
P1, P4

thttpd: A Lightweight HTTP Server Written in C

Call Graph of thttpd

79

SLOC: 8,360

• It’s extremely difficult to manually figure out when we can remove
which privileges permanently.

• We need an automated tool.

Compiler Comes to The Rescue (Again)!

80

Using Compiler to Enforce Least Privilege

81

• Programmers priv-bracket operations needing privileges

• Compiler analyzes and inserts calls to priv_remove()

• Model checker determines if system is capable of entering unsafe state.
‣ Assume attacker can exploit memory safety errors, e.g. buffer overflows

‣ Assume attacker can use system calls in program in any order

‣ Measured amount of execution spent with each privilege set

PrivAnalyzer Architecture

82

Program
using priv_raise()

Privilege Sets
and Credentials

Privileged
Instruction Counts

AutoPriv
Static Privilege Analysis

Risk Assessment

Compromised
System State

Program
using priv_raise()
and priv_remove()

ChronoPriv
Dynamic Privilege Analysis

ROSA
Exploit Analyzer Model

Checker

PrivAnalyzer Evaluation

83

• Tested 4 attacks i.e., unsafe system states
‣ Open /dev/mem for reading

‣ Open /dev/mem for writing

‣ Bind to a privileged port

‣ Send SIGKILL signal to kill the sshd server

Security Analysis Results

84

Program
Unsafe State

Read /dev/mem Write /dev/mem Privileged
Port

Kill Process

passwd 100% 100% 0% 63%

ping 0% 0% 0% 0%

sshd 100% 100% ~0% 100%

su 88% 88% 0% 88%

thttpd 10% ~0% 10% ~0%

Why Do Programs Use Privileges Ineffectively?

85

• Programs originally designed for root user
‣ No reason to design program with least privilege

• Privileges needed late in execution

• System files are owned by root.
‣ Privileged processes access subset of system files.

‣ Root processes can access all system files even with no privileges!

Strategy 1: Leverage Saved UID

86

• Use privilege to place file owner UID in saved UID

• Remove CAP_SETUID from maximum privilege set

• Switch to saved UID to open file using no privilege

Process

EUID RUID SUID

John John John

Owner: Jim
Perms: rw— —- —-

Strategy 1: Leverage Saved UID

87

• Use privilege to place file owner UID in saved UID

• Remove CAP_SETUID from maximum privilege set

• Switch to saved UID to open file using no privilege

Process

EUID RUID SUID

John John Jim

Owner: Jim
Perms: rw— —- —-

Strategy 1: Leverage Saved UID

88

• Use privilege to place file owner UID in saved UID

• Remove CAP_SETUID from maximum privilege set

• Switch to saved UID to open file using no privilege

Owner: Jim
Perms: rw— —- —-

Process

EUID RUID SUID

Jim John John

open()

Strategy 1: Leverage Saved UID

89

• Use privilege to place file owner UID in saved UID

• Remove CAP_SETUID from maximum privilege set

• Switch to saved UID to open file using no privilege

Owner: Jim
Perms: rw— —- —-

Process

EUID RUID SUID

John John Jim

Strategy 2: Use Different File Owners

90

• Have each set of files owned by different user

• Unprivileged process can now open only needed files

Password file
DHCP
Config

DNS
ConfigOwner: root

Owner: root

Owner: root

Process

EUID RUID SUID

John John root

Strategy 2: Use Different File Owners

91

• Have each set of files owned by different user

• Unprivileged process can now open only needed files

Password file
DHCP
Config

DNS
ConfigOwner: pw

Owner: dns

Owner: dhcp

Process

EUID RUID SUID

John John pw

Summary of Refactoring Strategies

92

• Switch UID early in execution to owner of needed files
‣ Use privilege to place file owner UID in saved UID

‣ Remove CAP_SETUID from maximum privilege set

‣ Can switch to file owner using setresuid() with no privilege

• Change owner of files to a unique unused UID
‣ Unprivileged process can now open only needed files

‣ Other system files inaccessible

Refactored Security Analysis Results

93

Program

Unsafe State

Read /dev/mem Write /dev/mem Privileged
Port Kill Process

passwd 100% 100% 0% 63%

Refactored
passwd 4% 4% 0% 4%

su 88% 88% 0% 88%

Refactored
su 1% 1% 0% 1%

Software Compartmentalization

94

Principle: Fault Compartmentalization

95

Separate individual components into smallest functional entity possible.
• These units contain faults to individual components.

• Allows abstraction and permission checks at boundaries.

• In practice, smallest functional entity can be too expensive.

A chatting app’s image processing module and audio processing module
are compartmentalized so that bugs in one module will not affect another.

Isolation vs. Compartmentalization

96

Compartmentalization builds on least privilege and isolation. Both properties
are most effective in combination: many small components that are isolated
and running and interacting with least privileges.

• Isolation is a fundamental mechanism.

• Compartmentalization is a design strategy/policy that often uses isolation.

‣ Emphasizes barriers/walls between components; often no intended interactions

‣ E.g., between processes, VMs, untrusted libs

Key Design Questions

97

• How to determine the right policy to enforce?

• How to express the policy in software?

• How to enforce the policy at runtime?

Policy Definition Method (PDM)

98

PDMs identify subjects, objects, and permissions to enforce.

Essential Elements

99

• Subject: a unit of computation; also called principle
‣ E.g., a sequence of assembly instructions, a thread of execution

• Object: a unit of privilege enforcement
‣ E.g., a byte of memory, a file, a network socket

• Permissions: actions that a subject may perform on objects
‣ E.g., read, write

• Protection domain: maximal set of subjects sharing the same permissions

Policy Definition Method (PDM)

100

PDMs identify subjects, objects, and permissions to enforce.

• Automation

• Policy languages

• Separation granularities

• Analysis techniques

• Subject selections

• Generality

Automation for Compartmentalization

101

‣ Developers must specify which object is given what permissions for what object.

‣ Pros: accurate

• Manual methods

‣ Cons: prone to human errors, leading to over- or under-privileged components
• Guided manual methods
‣ Often provide a feedback loop to guide users to specify and refine boundaries

• Policy-refinement methods
‣ Developers write policies (e.g., isolating certain libraries) in a policy language.

‣ User-provided policies are refined into concrete, low-level rules.

‣ Automatically analyze and understand programs and enforce policies.

‣ Difficult to pinpoint boundaries

• Fully automated methods

Policy Languages

102

• Allows developers to describe high-level policies.
‣ Guide manual methods and policy-refinement methods

• Two types: annotations and placement rules
‣ Annotations provide fine-grained semantics on subjects and objects

- E.g., annotating a variable as confidential, a function as sensitive

- Tightly coupled with program code

‣ Placement rules provide corse-grained, high-level description of component
trusted relationships and building rules.
- E.g., place libraries X and Y in separate domains

- Less dependent on program code

- Expressed in many ways, e.g., JSON, XML

• In general, annotations express local, low-level semantics, whereas
placement rules express full-system properties.

Separation Granularities

103

• Functions

• Libraries

• Source files

• Software packages

• Others

Analysis Techniques

104

• Static analysis: analyzing a program without running it
‣ Usually conservative but guarantees functionality

‣ Over-privileged compartments

• Dynamic analysis: analyzing a program at execution time
‣ Enforce policies based on dynamic behavior

‣ Static analysis: Identifying all unsafe pointers and their aliases, and their
accessed memory

• Example: Sandboxing all unsafe code and its accessed memory in Rust

- Extremely challenging to do precisely!
‣ Profile the executed unsafe code, memory it accesses, and code in the

safe region that accesses this memory.
- Reliability depends on the coverage of profiling.

- Suffer from availability issues

Subject Selections

105

• Code-centric
‣ Subjects are defined as program code.

‣ Protection domains constitute code regions.

‣ E.g., the libjpeg library

‣ Most popular selection

• Data-centric
‣ Subjects are temporal units of executes.

‣ Protection domains may contain one or more of these subjects.

‣ E.g., each worker process in a web server runs in isolation

• Hybrid
‣ Data-centric subjects bounded within code regions

‣ E.g., a thread bounded to a specific library

Key Design Questions

106

• How to determine the right policy to enforce?

• How to express the policy in software?

• How to enforce the policy at runtime?

Compartmentalization Abstractions

107

Key factors to consider

• A model of actions

• Trust models

• Target properties to enforce

• Composing with other abstractions

Model of Actions: Five primitives

108

• Create
‣ What to do during compartment initialization

‣ E.g., reserve a dedicated memory region, eliminate unnecessary syscalls

• Destroy
‣ What to do after a compartment finishes its task

‣ E.g., erasing memory that may contain sensitive data

• Enter (or call)
‣ What to do when entering into a compartment

• Return
‣ What to do when exiting a compartment

• Assign
‣ How to communicate between compartments

- message passing, e.g., via sockets or pipes

- shared memory

Trust Models

109

• Sandbox: restrain the untrusted compartments
‣ Support arbitrary number of compartments

‣ Most commonly adopted, e.g., browser plugins, device drivers

• Safebox: restrain everything else
‣ Dual-world model: only two compartments (trusted and untrusted)

‣ Suitable for situations where the trusted is small and well-specified

Properties to Enforce

110

• Integrity
‣ Targeted by all compartmentalization mechanisms

• Confidentiality
‣ Lack of it may benefit performance and simplify implementation.

‣ Whether to support it depends on the application scenarios.

• Availability
‣ Prevent and recover from resource exhaustion

‣ Usually require whole-system consideration

‣ Relatively less studied

Key Design Questions

111

•How to determine the right policy to enforce?

•How to express the policy in software?

•How to enforce the policy at runtime?

Enforcing Compartmentalization

112

• Software-based
‣ E.g., SFI, AutoPriv

• Hardware-based

• Hybrid
• Other considerations
‣ Granularity: byte-level to entire physical memory

‣ Supported number of domains

‣ Performance

‣ E.g., page-based, MPK

Evaluating Compartmentalization

113

• Security benefits

• Performance compared to a monolithic design

• Compatibility with existing software and programming idioms

• Usability of separated software

Case Study: Mail Server

114

• Mail Transfer Agents (MTA) need to do a plethora of tasks:
‣ Send/receive data from the network

‣ Manage a pool of received/unsent messages

‣ Provide access to stored messages for each user

Sendmail uses a typical Unix approach with a large monolithic server and is
known for the high complexity and previous security vulnerabilities.

How would you compartmentalize a mail server?

Case Study: Mail Server

115

qmail: An mail MTA designed with security in mind.
• Key enabler: modularity

qmail-smtpd qmail-inject

qmail-queue

qmail-send

qmail-rspawn

qmail-remote

qmail-lspawn

qmail-local

Least Privilege

Isolation
Compartmentalization

Case Study: Mail Server

116

What can we do to further reduce potential exploits?

qmail-smtpd
(qmaild)

qmail-inject
(“user”)

qmail-queue
(suid qmailq)

qmail-send
(qmails)

qmail-rspawn
(qmailr)

qmail-remote
(qmailr)

qmail-lspawn
(root)

qmail-local
(suid “user”)

• Separate modules run under separate user IDs.

