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Outline

e Review: Isolation
o |_east Privilege Principle
e Software Compartmentalization



Architecture of Modern Computers

Input

How to ensure safety when sharing memory with untrusted programs?
How to ensure safety when sharing memory with untrusted components?



Principle: Isolation

. Isolate two components from each other

« One component cannot access data/code of the other component
except through a well-defined API

User-space application may only access the disk through the filesystem
API (i.e., the OS prohibits direct block access to raw data). The OS
iIsolates the user-space process from the disk.

eg.
]
& Isolation incurs overhead due to switching cost between components.



Software-based Fault Isolation (SFl)

* Introduced by [Wahbe et al. 93] for MIPS

> [IMcCamant & Morrisett 06] extended it to x86
> [IPNaCl] Google implemented SFI for ARM, ADM64, & MIPS for Chrome

* SFIl is within the the same process address space
> One type of intra-address space isolation
> Each protection domain has a designhated memory region.
> Same process: avoiding costly context switches

* Implementation by inserting software checks before critical instructions
> E.g., memory reads/writes, indirect branches

* Pros: Fine-grained, flexible, low context-switch overhead
* Cons: May require compiler support and software engineering effort



SFI Sandbox Setup

Fault Domain

R (Sandbox) e Data region (DR): [DB, DL]
> > Hold data: stack, heap, global

oL Data Region e Code region (DR): [CB, CL]

CR g > Hold code
. e Safe external (SE) addresses

cL Code Reglon > Host trusted services that require higher privileges
- > Code can jump to them for accessing resources.

- » Code can safely transition out of the current domain.
SE + * DR, CR, and SE are disjoint.




SFI Policy

Fault Domain
DB (Sandbox) (Dafa-access policy: A
All mem reads/writes
remain in [DB, DL]
DL
CB
/Control-flow policy: A
CL A Control-flow targets must

— " N T~ remainin [CB,CL] U SE

" {——



SFl Enforcement Overview

* Dangerous instructions: memory reads/writes, control-transfer instructions

> They have the potential of violating the SFI policy.
* SFI enforcement

> Check every dangerous instruction to ensure it obeys the policy
* Two general enforcement strategies

> Dynamic binary translation
> Inlined reference monitors



Example

r3:=rl

r4:=r2*4

rd . =rl+r4

r5:=0
loop:

if r3 = r4 goto end
ré := mem(r3)

rS:=r5+r6
r3:=r3+4
jmp loop

end:

* r1 is a pointer to the beginning of an array
* r2 holds the array’s length

* The program computes in r5 the sum of the array items.

int kend = arr + len x 4:
int sum = 0;
while (arr < end) {

sum += *arr;

arr++:



Optimization: Integrity-only Isolation

* A program performs many more reads than writes.

» In SPEC2006, 50% instructions perform some memory reads or writes;
only 10% perform memory writes [Jaleel 2010]

* For integrity, check only memory writes
» Sufficient when confidentiality is not needed or less of a concern.

e Much more efficient

> [Wahbe et al. 1993] on MIPS using typical C benchmarks

- 22% execution overhead when checking both reads and writes;
4% when checking only writes

> PittSFleld on x32 using SPECIint2K

- 21% execution overhead when checking both reads and writes;
13% when checking only writes

Jaleel 2010: https://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
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Optimization: Data Region Specialization

« Example: DB = 0x12340000 ; DL = 0x1234FFFF
> The data region ID is 0x1234

e ro = mem(r3) becomes

rl® = r3 >> 16 // right shift 16 bits to get the region id
1T rl@ '= 0x1234 goto error
rée = mem(r3)
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Optimization: Address Masking

* Address checking stops the program when the check fails
> Strictly speaking, unnecessary for isolating faults

* A more efficient way: force the address of a memory operation to be
a DR address and continue execution

> Called address masking
> “Ensure, but don’t check.”

- When using data region specialization, just modify the upper bits in the
address to be the region ID

- PittSFleld reported 12% performance gain when using address masking
instead of checking for SPECint2000
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Optimization: Address Masking

« Example: DB = 0x12340000 ; DL = 0x1234FFFF
> The data region ID is 0x1234

e Instead of

rl® = r3 >> 16 // right shift 16 bits to get the region id
1T rl@ '= 0x1234 goto error

ro

mem(r3)

e ro = mem(r3) becomes

r3
r3
ro

r3 & Ox0000FFFF // bit-mask to clear the first 16 bits
r3 | 0x12340000 // bit-mask to set the first 16 bits to 0x1234
mem(r3)
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Data Guards

* A data guard refers to either address checking or address masking.
> When which one is used is irrelevant.

e Introduce a pseudo-instruction “r’'=dGuard(r)”

> To hide implementation details
* An implementation should satisfy the following properties of r’=dGuard(r)”

> If ris in DR, then r’ should equal r
> |f r IS outside DR, then

- For address checking, an error state is reached.
- For address masking, rr’ gets an address within the safe range

- The safe range is implementation specific; it’s often DR.
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Guard Zones Enable More Optimizations

-} ss,. ° In-place sandboxing
DB X e Redundant check elimination

* Loop check hoisting

D

L
>
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Optimization: In-place Sandboxing

e Example: r6 = mem(r3 + 12) becomes

r3 = dGuard(r3)
ré = mem(r3 + 12)

* Why is the above safe?

» “r3 1= dGuard(r3)” constrains r3 to be in DR and then r3+12
must be in [DB-GSize, DL+GSize], assuming GSize > 12.
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Why is the Optimized Code Safe?

r3:=rl

r4 :=r2 * 4

rd.=rl+r4

r5:=0

r3 := dGuard(r3)
loop:

ifr3=>r4 goto en

ré := mem(r3)

5:=r5+r6

r3:=r3+4

jmp loop
end:

I II Q."

<

'Canshow r3 € [DB,DL+4]
is ‘Ioop intlariam‘

'[DB, DL+4]
C [DB- GS|ze DL+GS|ze]

‘ \E

II
1
ll

,,,r3 € [DBDL] |
='r3 € [DB,DL+4] g
r3 € [DB, DL+4]
r3 € [DB,DL]

|
1
|

I
I
I

|
I
I

I
I
I

r3 € [DB+4,DL+4]
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Optimization: Guard Changes Instead of Uses

 Some registers are changed rarely but used often.

> E.g., in 32-bit code, ebp is usually set in the function prologue and
used often in the function body.

 Sandbox the changes to those special registers, instead of uses
> E.9., ebp = esp becomes

ebp = esp
ebp = dGuard(ebp)

> Later uses of %ebp plus a small constant do not need to be
guarded, if used together with guard zones.
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Anything Vulnerable about This Program?

r3:=rl

=D %4 What if a control flow hijacking (e.q., by corrupting an
_ return address) causes the control flow to jump over
rd:=rl+r4d .
P dGuard and directly go to the memory access?
r3 := dGuard(r3)
loop:

if r3 = r4 goto end
ré := mem(r3)

r5:=r5+r6
r3:=r3+4
jmp loop

end:
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CFl is often needed for other security
policies such as SFl.
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Align-chunk Enforcement

e Divide the code into chunks of some size
> E.9., 16 or 32 bytes

* Each chunk starts at an aligned address
> SO we can force an address to align by chunkSize with “addr / chunkSize”

 Make dangerous instructions and their guards stay within one chunk.
»E.g., “r10 := dGuard(rl@); mem(rl@) := r2” stay within one chunk

* Insert guards before indirect branches so that they target only aligned
addresses (chunk beginnings)
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Downside of Align-chunk Enforcement

* All legitimate jump targets have to be aligned.
> No-ops have to be inserted for that.

* E.g., assuming a 16-byte chunk, and each instruction is 4-byte long.

rl = mem (r2) r2 = dGuard(r2)
r3 = mem (r4) rl = mem (r2)

nop
l' nop
--------------------------- chunk boundary
r2 = dGuard(r2) r4 = dGuard(r4)
rl = mem (r2) / r3 = mem (r4)

rd = dGuard(r4)
r3

mem (r4)
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Hardware-enforced Memory Access Configuration

* Memory access permissions, e.g., read/write/executable,
checked and enforced by hardware

* Two primary types:
> Memory Management Unit (MMU)
- Supports virtual address

- Mainly for general-purpose computing systems, such as desktops/smartphones

> Memory Protection Unit (MPU)

- Flat address space—no virtual address
- Mainly for low-end embedded systems
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Example: Intel x64 PTE That Maps a 4-KB Page

63|62...59| 58...52 51...M M-1...12 11..9 |8 |7|6|5]4 (32|10
P P[PJU[R

XDl PK Reserved Reserved PFN AVL GIA|IDIAICIW|/ |/ |P
T DITIS|W

e P: Present e G: Global

e R/W: Read/Write e AVL: Available for software to define

» PWT: Page-level write-through  PFN: Physical frame number (physical address)
« PCD: Page-level cache disable < PK: Protection key (if supported)

* A: Accessed  XD: execute-disable

e D: Dirty
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Configure Page Table Entry to Isolate Memory

 With data guards, memory access “mem(rl) = r2” becomes

rl = dGuard(r1l)
mem(rl) = r2

e Alternative: Before mem( rl), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.

> In *nix systems, use mprotect () syscall.

mprotect(protected_mem, PROT_NONE);
mem(rl) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

> Pros: Strong protection
» Cons: High performance penalty; introducing security hazards
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Example: Intel x64 PTE That Maps a 4-KB Page

e-@ 58..52 | 51...M M-1...12 11.9 |8 |7|6|54 32|10
P PI[PJU[R

XDl PK Reserved Reserved PFN AVL G|IA|DIA|ICIW]|/ |/ |P
T DITI|IS| X

e P: Present e (G: Global

e R/W: Read/Write e AVL: Available for software to define

» PWT. Page-level write-through  PFN: Physical frame number (physical address)
« PCD: Page-level cache disable e PK: Protection key (if supported)

* A: Accessed  XD: execute-disable

e D: Dirty
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Intel Memory Protection Key (MPK)

* A protection key represents an access permission configuration.
> E.9., PK2 set to read-only, and PKS5 set to read + write

* Memory pages are divided into different groups.
* A group of pages are associated with a protection key.
* Supports up to 16 protections keys (bits 59-62 in PTE)

> |.e., 16 different protection domains

* Register pkru (Protection Key Rights for User Pages) for memory access checks
> 32-bit register
> Every two bits represents the memory access permission of one PK.

- first bit: Access Disabled (AD) when set to 1
- second bit: Write Disabled (WD) when set to 1
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pkru Register

prku: |[PK15|PK14|PKi13 PK12...PK2 PK1 | PKO

Bits: 30 28 20 4 2

* £.9., aPTE’s has PK13, and PK13is 10
> Meaning this page of memory is set to be read-only
* E.g., a PIE’s has PK5, and PKS5 is 00
> Meaning this page of memory is set to be readable and writable



How to Manage MPK

 Use syscall pkey_mprotect()

int pkey_mprotect(void *addr, size t len, int prot, int pkey);

> Convenient, but slow (~1,100 CPU cycles)

* Directly manipulating pkru using the wrpkru instruction

> Allows a program to change the memory access permissions for selected PK
- eax contains the new PK value to be set

- ecx and edx must be O
> Fast (~23 CPU cycles)

e rdpkru is used to read PKs into eax.
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Configure Page Table Entry to Isolate Memory

 With data guards, memory access “mem(rl) = r2” becomes

rl = dGuard(r1l)
mem(rl) = r2

e Alternative: Before mem( rl), set protected memory domains
outside of r1 to unwritable, and resume the permission afterwards.

> In *nix systems, use mprotect () syscall.

mprotect(protected_mem, PROT_NONE);
mem(rl) = r2
mprotect(protected_mem, PROT_READ | PROT_WRITE);

> Pros: Strong protection
» Cons: High performance penalty; introducing security hazards
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Example of Protecting Memory Domain with MPK

* Assume protected memory domain is associated with pk1l.
» For dangerous instruction “mem(rl) = r2”, it becomes

X0Or %ecx, %ecCX

xor %edx, %edx Anything vulnerable about this solution?

rdpkru

or %eax, 0x00000004 How to make sure your MPK gate instructions
wrpkru (those transitioning to/from a specific PK
mem(rl) = r2 configuration) are respected?

.. // recover original PKs
Check the optional readings for this lecture.
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east Privilege Principle
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Outline: Principle of Least Privilege

 What are privileges?
 What problems do current systems have with privileges?

 What can we do to more safely use privileges?
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At a given point in time, what operations
are allowed on which object?



Reference Monitor

* All references by any program to objects (data, devices, etc.) are

validated against a policy.

Subject

Golicy

request access

to object

access not

Reference
monitor

Object,

permitted

.
" ..
.
"
ol
"
"
.
.
.
"
.
.
.

by policy

> Object,

Object,
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Terminology

» Subject
* Entity that wants to take an action
* Usually, the subject has been authenticated
* May be an unknown subject

access not

permitted x> Object,

permitted
by policy

Reference

request access

> Object,

Subject

monitor

to object

X> ObjECt3




Termino|ogy

* Subject

* Action

* What the subject wants to do
* Read, write, execute
e Start, shutdown
* Debug (one process monitoring another)

Subject

request access

to object

access not

permitted

............................ x,

REfe rence
monitor

Object,

permitted

by policy

> Object,

Object,
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Terminology

* Subject
* Action
» Object

* What item the subject wants to take the action on

* Memory

* Files and directories
* Services

* Devices

Subject

request access

to object

Reference
monitor

permitted

Object,

by policy

> Object,

Object,
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Terminology

. :
Su bJeCt access not

. AC’[IOH permittgq._x...) Object,

o ' : request access | Reference \ Permitted _ Object
ObJeCt el to object monitor | Py policy 2

* Defines what is allowed and what is not allowed
* Usually parameterized by (subject, action, object) triple

39



Terminology

* Subject
* Action

¢ ObJeCt Subject

request access

* Policy

* Reference Monitor
* Controls access to an object

to object

permitted_'__x._.;,

Reference
monitor

* Only allows a subject to execute an action on an object

If that action conforms with the policy

permitted

access not

Object,

by policy

> Object,

Object,
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Access Matrix

* Access policy organized as a
matrix

* Rows indexed by subjects
* Columns indexed by objects

* Access Control Entry (ACE)

* Specifies access of Subject on a
given Object

row i —>}.

column

v
Objects
O O 0.
Subjects L 72 J
> R -
O .Si ............................. AZ’J
‘....(b)

“(a)
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Access Control List / Capability List

columnj l

» Capabillity List

* For a given subject, what objects W o,|0,| - | o0
and what permissions over those Subjects 2 -
objects S RW e

A row of the Access Matrix

 Access Control List

* For a given object, which subjects (owi—>""5. Al .
have access and what = Dt bl S
permissions to that object ._

. A column of the Access Matrix “(b)

lllllllllllllllllllll




Principle of Least Privilege

» A component has the least privileges needed to function

e Any further removed privilege reduces functionality
* Any added privilege will not increase functionality (according to
the specifications)

* This property constraints an attacker in the obtainable privileges.

e.g9. | Rendering in Chromium executes in an encapsulated sandbox where only
= |I! minimal system calls are allowed.
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Privileges

priv-i-lege | 'priv(e)li |
noun

a special right, advantage, or immunity granted or available only to a particular person or group: education is a right, not a privilege |
[mass noun] : he has been accustomed all his life to wealth and privilege.

* Override (i.e., make exceptions to) access control rules
* Usually a thread or process attribute
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Rules Are Made To Be Broken.
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Why Do We Need Privileges?

* Real systems need “exceptions” to access control rules.

> [nstalling new software

> Change of policy

> Change of ownership

> Fix incorrect configurations
> Help users solve problems
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Privilege Granularity

)

Coarse Grain

.

Medium Grain

.

Fine Grain
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Coarse-grained Privileges

* All or nothing
» Effective UID of O (root) overrides all access controls.
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What Can the Root User Do (Unix)?

Depends on the OS. But in general, (almost) omnipotent.

* Open any file for reading

* Open any file for writing

* Write to any directory

* Change file’s owner

* Change file’s permission bits

* Change process UIDs to arbitrary values
* Send signals to any process

* Change the system time

* Bind socket to a privileged port

* Reboot the system
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Medium-grained Privileges (Linux)

* Named “capabilities” in the Linux documentation
» Kernel checks for privileges in process’s effective privilege set

* Kernel provides “hack” to mimic Unix access control

> Turns all privileges on when effective UID is root

> Turns all privileges off when effective UID is not root

> A process can disable this behavior using prct1( )
e Linux kernel 6.17 uses 41 capabillities.

> “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)
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Medium-grained Privileges (Linux)

Privilege Description

Override read permissions on files
Override search permissions on directories

CAP_DAC_READSEARCH

CAP DAC OVERRIDE Override read, search, and write access on files and directories

CAP_CHOWN Change owner of files

CAP_SETUID Change real, effective, and saved UlDs to any value
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Fine-grained Privileges (Argus PitBull)

PV_DAC_READ

PV_DAC_WRITE
PV_ROOT

PV_MAC_READ

PV_MAC_WRITE

e Separate privileges for overriding read, write, execute
o Separate privilege classes for overriding each type of access control (MAC and DAC)

* Hierarchical tree to make privileges easier to manage: Top privilege is
a superset of sub-tree.

* Root user is no longer a special user.
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Outline: Principle of Least Privilege

 What problems do current systems have with privileges?
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Unneeded Privileges May Be Exploited
to Launch Attacks.
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Turning Privileges On and Off

* Programs do not need all operations to be privileged.

> The program’s functionality may not need privileges.

- Use privilege to open password file
- Don’t use privilege to open user preferences file

* Follow Saltzer and Schroeder Principle of Least Privilege
> Programs using fewer privileges tend to have fewer vulnerabillities.
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Enabling and Disabling Unix “Privilege”

Effective
UlD

Real UID

Saved
UID
root John Jim

* To disable root, swap EUID and SUID
* To enable root, swap EUID and SUID
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Enabling and Disabling Unix “Privilege”

Saved
UID

Etfective
o
Jim John root

* To disable root, swap EUID and SUID
* To enable root, swap EUID and SUID
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Enabling and Disabling Unix “Privilege”

Effective
UlD

Real UID

Saved
UID
root John Jim

* To disable root, swap EUID and SUID
* To enable root, swap EUID and SUID
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Privilege Bracketing

* Enable privileges before an privileged operation
* Disable privileges after the operation

Privileged

Execution Time Ve
Non-privileged

Execution
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Unix Privilege Bracketing: 1

setresuid(23, 23, 0);
Real UID IS
s 0 setresuid(23, 0, 23);

UlD

a0 03 open (“/dev/hd”);

UlD

setresuid(23, 23, 0);

e setresuid() sets the real user ID, the effective user ID,
and the saved user |ID of the calling process.
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Unix Privilege Bracketing: 2

Real UID 0!
Fffoctive 73 setresuid(23, 0, 23);

UlD

a0 0 open (“/dev/hd”);

UlD

setresuid(23, 23, 0);

e setresuid() sets the real user ID, the effective user ID,
and the saved set-user-1D of the calling process.
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Unix Privilege Bracketing: 3

Real UID e

Etfective O
Ul

a0 03 open (“/dev/hd”);

UlD

setresuid(23, 23, 0);

e setresuid() sets the real user ID, the effective user ID,
and the saved set-user-1D of the calling process.
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Unix Privilege Bracketing: 4

Real UID e

Etfective O
Ul

Saved 2 3

UlD

setresuid(23, 23, 0);

e setresuid() sets the real user ID, the effective user ID,
and the saved set-user-1D of the calling process.
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Unix Privilege Bracketing: 5

What if attackers turn on the root UID at unexpected points?

Real UID e

Effective
Ul 23

Saved
UID O

e setresuid() sets the real user ID, the effective user ID,
and the saved set-user-1D of the calling process.
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Privilege Bracketing

* Enable privileges before an privileged operation
* Disable privileges after the operation

Privileged What /f attackers set EUID to O here?
Execution
Time
Non-privileged
Execution
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Outline: Principle of Least Privilege

 What can we do to more safely use privileges?
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How does it work on systems with
more than one privilege?
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Medium-grained Privileges (Linux)

* Named “capabilities” in the Linux documentation
» Kernel checks for privileges in process’s effective privilege set

* Kernel provides “hack” to mimic Unix access control

> Turns all privileges on when effective UID is root

> Turns all privileges off when effective UID is not root

> A process can disable this behavior using prct1( )
* Linux kernel 6.17 uses 41 capabillities.

> “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)
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Process Privilege Sets

* Maximum privilege set: All allowed privileges
> E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

e Effective privilege set: Currently active privileges
> E.g., CAP_DAC_READSEARCH

* Process can add effective privilege if it is in maximum set.
* Process can remove privileges in maximum and effective.
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Fine-grained Privilege Bracketing
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Operations on Privilege Sets

Operation Description

priv_raise() Enable privileges in effective set

priv_lower() Disable privileges in effective set

priv_remove() Remove privileges in effective and permitted set

open (“/etc/passwd”, O_RDONLY);, =)

priv_raise (CAP_DAC_READSEARCH);
open (“/etc/passwd”, O_RDONLY);
priV_lower(CAP_DAC_READSEARCH) :
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Unix Privilege Bracketing: 1

setresuid(23, 23, 0);
Real UID IS
s 0 setresuid(23, 0, 23);

UlD

a0 03 open (“/dev/hd”);

UlD

setresuid(23, 23, 0);

e setresuid() sets the real user ID, the effective user ID,
and the saved user |ID of the calling process.
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Linux Privilege Bracketing

prctl()
Real UID k!
setresuid(23, 23, 23);

Effective
UlD 23

priv_raise(CAP.DAC OVERRIDE)

Saved
UID 23 open (“/dev/hd”);

priv_lower(CAP. DAC OVERRIDE)

Anything vulnerable about this strategy?

What if priv_raise( ) is exploited by attackers?
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How to remove privileges in Unix/Linux?
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Process Privilege Sets

* Maximum privilege set: All allowed privileges
> E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

e Effective privilege set: Currently active privileges
> E.g., CAP_DAC_READSEARCH

* Process can add effective privilege if it is in maximum set.
* Process can remove privileges in maximum and effective.

* Challenge: Removing unneeded privileges at the earliest point.
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Remove Privileges

e Unix
» Set EUID, RUID, and SUID to non-zero values
e Linux
> Remove privilege from effective and maximum set

/0



Remove Privileges

int main() {

S l
void foo() {

. // use privilege P1

Insert priv_remove(P1) after P1 is no longer needed.

I
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thttpd: A Lightweight HTTP Server Written in C

SLOC: 8,360

setgroups time | fdwatch_get_nfiles

occasional
tmr_cleanup

—— - _ , [ ]
= = — e [ =

getpwnam httpd_unlisten openlog

httpd_initialize

check_throttles httpd_send_err handle_newconnect | mmc_term | httpd_destroy_conn

' lookup_hostname
‘.."' ~—— _— —————— =
o — — = = —
_memset_chk | | lvm.memsetp0.i64 | | _snprintf chk | | getaddrinfo | | gai_strerror \ ‘ ( wakeup_connection lhupd _get_conn ' - (= gettimeofday thitpd_logstats | | fdwatch_logstats | | tmr_logstats | | httpd_logstats | | mme_logstats
‘- — — _ :
—— — s ——

__memmove_chk | | llvm.objectsize.i64.p0 freeaddrinfo
= == Y 1
dd_fd " P| yslosSDARWIN_EXTSN really_clear_connection

httpd_realloc_str | finish_connection

l fdwatch_check_fd ‘ fchown | fdwatch_get_next_client_data , handle_send hut_down
— — =4 _ S g ‘\\
= » —

httpd_start_request httpd_parse_request | httpd_got_request

= T T

f\

l htipd_set_ndelay

tmr_create

[l

Call Graph of tht

fdwatch_del_fd

e |t’'s extremely difficult to manually figure out when we can remove
which privileges permanently.

e \We need an automated tool.



Compiler Comes to The Rescue (Again)!
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Using Compiler to Enforce Least Privilege

* Programmers priv-bracket operations needing privileges
« Compiler analyzes and inserts calls to priv_remove( )
* Model checker determines if system is capable of entering unsafe state.

> Assume attacker can exploit memory safety errors, e.g. buffer overflows
> Assume attacker can use system calls in program in any order
> Measured amount of execution spent with each privilege set
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PrivAnalyzer Architecture

Program

using priv_raise() Compromised

System State

AutoPriv
Static Privilege Analysis

Program
using priv_raise()
and priv_remove()

ChronoPriv Privilege Sets ROSA

D ic Privil Analvsi and Credentials Exploit Analyzer Model
ynamic Privilege Analysis Checker

Privileged
Instruction Counts

Risk Assessment
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PrivAnalyzer Evaluation

e Tested 4 attacks I.e., unsafe system states

> Open /dev/mem for reading

> Open /dev/mem for writing

> Bind to a privileged port

> Send SIGKILL signal to kill the sshd server
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Security Analysis Results

Unsafe State

Program
5 Read /dev/mem | Write /dev/mem Pr1v11e;c;ed Kill Process
Por

passwd 100% 100% 63%

ping 0% 0% 0% 0%
sshd 100% 100% ~0% 100%
su 88% 88% 0% 88%

thttpd 10% ~0% 10% ~0%



Why Do Programs Use Privileges Ineffectively?

* Programs originally designed for root user
> No reason to design program with least privilege
» System files are owned by root.

> Privileged processes access subset of system files.
> Root processes can access all system files even with no privileges!

* Privileges needed late in execution
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Strategy 1: Leverage Saved UID

* Use privilege to place file owner UID in saved UID
* Remove CAP_SETUID from maximum privilege set
* Switch to saved UID to open file using no privilege

EUID RUID SUID Owner: Jim
Perms: rw

%

John John John
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Strategy 1: Leverage Saved UID

* Use privilege to place file owner UID in saved UID
* Remove CAP_SETUID from maximum privilege set
* Switch to saved UID to open file using no privilege

EUID RUID SUID Owner: Jim
Perms: rw

%

John John Jim
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Strategy 1: Leverage Saved UID

* Use privilege to place file owner UID in saved UID

* Remove CAP_SETUID from maximum privilege set

* Switch to saved UID to open file using no privilege
open()

—_—
EUID RUID SUID Owner: Jim
Perms: rw

Jim John John

A
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Strategy 1: Leverage Saved UID

* Use privilege to place file owner UID in saved UID
* Remove CAP_SETUID from maximum privilege set
* Switch to saved UID to open file using no privilege

EUID RUID SUID Owner: Jim
Perms: rw

%

John John Jim
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Strategy 2: Use Different File Owners

* Have each set of files owned by different user
* Unprivileged process can now open only needed files

DHCP
Password file Config

% %
DNS

Owner: root Config ~ Owner: root
EUID RUID SUID %

John John  root

Process

Owner: root
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Strategy 2: Use Different File Owners

* Have each set of files owned by different user
* Unprivileged process can now open only needed files

DHCP
Password file Config

% %
DNS

Owner: pw Config ~ Owner: dhcp
EUID RUID SUID %

John John pw

Process

Owner: dns
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Summary of Refactoring Strategies

* Switch UID early in execution to owner of needed files

> Use privilege to place file owner UID in saved UID
> Remove CAP_SETUID from maximum privilege set
» Can switch to file owner using setresuid() with no privilege

* Change owner of files to a unique unused UID

> Unprivileged process can now open only needed files
> Other system files inaccessible
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Refactored Security Analysis Results

Unsafe State

Program
Read /dev/mem Write /dev/mem Pr1;7)1iiged Kill Process

passwd 100% 100% 63%

Refactored
passwd

su 88% 88% 0% 88%

Refactored
su
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Software Compartmentalization
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Principle: Fault Compartmentalization

+ Separate individual components into smallest functional entity possible.

* These units contain faults to individual components.
e Allows abstraction and permission checks at boundaries.
* In practice, smallest functional entity can be too expensive.

¢9.| A chatting app’s image processing module and audio processing module
— |l are compartmentalized so that bugs in one module will not affect another.
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Isolation vs. Compartmentalization

e |[solation Is a fundamental mechanism.

> Emphasizes barriers/walls between components; often no intended interactions
> E.9., between processes, VMs, untrusted libs
« Compartmentalization is a design strategy/policy that often uses isolation.

Compartmentalization builds on least privilege and isolation. Both properties

are most effective in combination: many small components that are isolated
and running and interacting with least privileges.
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Key Design Questions

* How to determine the right policy to enforce?
* How to express the policy in software?

* How to enforce the policy at runtime?
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Policy Definition Method (PDM)

PDMs identify subjects, objects, and permissions to enforce.
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Essential Elements

* Subject: a unit of computation; also called principle
> E.9., a sequence of assembly instructions, a thread of execution
* Object: a unit of privilege enforcement

> E.g., a byte of memory, a file, a network socket
* Permissions: actions that a subject may perform on objects
> E.g., read, write
* Protection domain: maximal set of subjects sharing the same permissions
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Policy Definition Method (PDM)

PDMs identify subjects, objects, and permissions to enforce.

 Automation

* Policy languages

e Separation granularities
* Analysis technigues

» Subject selections

* Generality
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Automation for Compartmentalization

e Manual methods

> Developers must specify which object is given what permissions for what object.
> Pros: accurate

> Cons: prone to human errors, leading to over- or under-privileged components
* Guided manual methods

» Often provide a feedback loop to guide users to specify and refine boundaries
* Policy-refinement methods
> Developers write policies (e.g., isolating certain libraries) in a policy language.
> User-provided policies are refined into concrete, low-level rules.
e Fully automated methods

> Automatically analyze and understand programs and enforce policies.
> Difficult to pinpoint boundaries
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Policy Languages

* Allows developers to describe high-level policies.
> Guide manual methods and policy-refinement methods

* Two types: annotations and placement rules
> Annotations provide fine-grained semantics on subjects and objects
- E.g., annotating a variable as confidential, a function as sensitive

- Tightly coupled with program code

> Placement rules provide corse-grained, high-level description of component
trusted relationships and building rules.

- E.g., place libraries X and Y In separate domains
- Less dependent on program code
- Expressed in many ways, e.g., JSON, XML

* In general, annotations express local, low-level semantics, whereas
placement rules express full-system properties.
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Separation Granularities

* Functions

* | ibraries

e Source files

» Software packages
e Others
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Analysis Techniques

e Static analysis: analyzing a program without running it

> Usually conservative but guarantees functionality
> Over-privileged compartments

* Dynamic analysis: analyzing a program at execution time
> Enforce policies based on dynamic behavior

 Example: Sandboxing all unsafe code and its accessed memory in Rust

> Static analysis: ldentifying all unsafe pointers and their aliases, and their
accessed memory

- Extremely challenging to do precisely!

> Profile the executed unsafe code, memory it accesses, and code in the
safe region that accesses this memory.

- Reliability depends on the coverage of profiling.

- Suffer from availability issues 104



Subject Selections

e Code-centric

> Subjects are defined as program code.
> Protection domains constitute code regions.
> E.g., the Libjpeq library
> Most popular selection
* Data-centric

> Subjects are temporal units of executes.
> Protection domains may contain one or more of these subjects.
> E£.9., each worker process in a web server runs in isolation

* Hybrid
> Data-centric subjects bounded within code regions
> E.g., a thread bounded to a specific library
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Key Design Questions

* How to express the policy in software?
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Compartmentalization Abstractions

Key factors to consider

e A model of actions

* Trust models
e Target properties to enforce
 Composing with other abstractions
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Model of Actions: Five primitives

e Create
> What to do during compartment initialization

> E.g., reserve a dedicated memory region, eliminate unnecessary syscalls

* Destroy
> What to do after a compartment finishes its task

> E.9., erasing memory that may contain sensitive data
* Enter (or call)
> What to do when entering into a compartment
* Return
> What to do when exiting a compartment
* Assign
> How to communicate between compartments
- message passing, e.g., via sockets or pipes
- shared memory 108



Trust Models

 Sandbox: restrain the untrusted compartments

> Support arbitrary number of compartments
> Most commonly adopted, e.g., browser plugins, device drivers

» Safebox: restrain everything else
> Dual-world model: only two compartments (trusted and untrusted)
» Suitable for situations where the trusted is small and well-specified
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Properties to Enforce

* Integrity
> Targeted by all compartmentalization mechanisms

» Confidentiality
> Lack of it may benefit performance and simplify implementation.
> Whether to support it depends on the application scenarios.
* Avallability
> Prevent and recover from resource exhaustion
> Usually require whole-system consideration
> Relatively less studied
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Key Design Questions

e How to enforce the policy at runtime?
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Enforcing Compartmentalization

e Software-based

> E.g., SFI, AutoPriv
 Hardware-based

> E£.9., page-based, MPK
* Hybrid

e Other considerations

> Granularity: byte-level to entire physical memory
> Supported number of domains
> Performance
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Evaluating Compartmentalization

* Security benefits

* Performance compared to a monolithic design
 Compatibility with existing software and programming idioms
* Usability of separated software
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Case Study: Mail Server

 Mail Transfer Agents (MTA) need to do a plethora of tasks:

» Send/receive data from the network
> Manage a pool of received/unsent messages
> Provide access to stored messages for each user

Sendma1ll uses a typical Unix approach with a large monolithic server and is
known for the high complexity and previous security vulnerabillities.

,(}?2\ How would you compartmentalize a mail server?
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Case Study: Mail Server

gmail: An mail MTA designed with security in mind.

o Key enabler: modularity

Compartmentalization
|solation

gmail-smtpd x / gmail-inject
| east Privilege

gmail-queue

l
o gmail-send \

gmail-rspawn gmail-Ispawn

| l

gmail-remote gmail-local
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Case Study: Mail Server

\ [ ]

-(?): What can we do to further reduce potential exploits?
e Separate modules run under separate user IDs.

' e

gmail-smtpd qmall |nject

(gmaild) \ / (“user”)

gmail-queue

(suid gmailq)
gmail-send
gmail-rspawn gmail-Ispawn
(@mailr) (root)
gmail-remote gmail-local

(gmailr) (suid “user”)

116



