
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

A2: Is Less Really More?

2

• Suggested future research directions:
‣ Improve how we measure/evaluate the security of binaries

‣ Improve debloating tools to generate more secure code in the first place

A3: Exploiting Format String Vulnerabilities

3

Format String Attacks

4

int main(int argc, char *argv[]) {
 if (argc > 1) {
 printf(argv[1]);
 }
}

• What about the following simple program for echoing user input?

• Appears to be normal
• However, what would happen if the input is “hello%d%d%d%d%d%d%d”?
‣ i.e. printf(“hello%d%d%d%d%d%d%d”);
‣ It would print numbers from five registers and the stack.

- Allows attackers to peak unintended data
• What if arg[1] is “hello%s”?
‣ Likely a segmentation fault

confidentiality vulnerability

availability vulnerability

x86-64/AMD64 Calling Convention

5

How functions/subroutines pass arguments and return values at the
macro-architecture level.

void foo() {
 ...
 bar(a, b, c, d, e, f, g, h);
 ...
}

long bar(long a, long b, long c, long d,
 long e, long f, long g, long h) {
 long xx = a * b * c * d * e * f * g * h;
 long yy = a + b + c + d + e + f + g + h;
 long zz = utilfunc(xx, yy, xx % yy);
 return zz + 20;
}

• Where to put all the arguments?

• Where to put the return value?

• Arguments are passed
‣ in registers: rdi, rsi, rdx, rcx, r8, r9

‣ then via stack

• Return value is passed via
‣ in registers: rax, rdx

‣ then via stack

Outline

6

• Review: Least Privilege Principle & Software Compartmentalization
• Address Sanitizer
• Pointer-based Memory Safety

Principle of Least Privilege

7

•What are privileges?
•What problems do current systems have with privileges?
•What can we do to more safely use privileges?

Privileges

8

• Override (i.e., make exceptions to) access control rules

• Usually a thread or process attribute

Why Do We Need Privileges?

9

• Real systems need “exceptions” to access control rules.
‣ Installing new software

‣ Change of policy

‣ Change of ownership

‣ Fix incorrect configurations

‣ Help users solve problems

Privilege Granularity

10

Coarse Grain Fine GrainMedium Grain

Coarse-grained Privileges

11

• All or nothing

• Effective UID of 0 (root) overrides all access controls.

Medium-grained Privileges (Linux)

12

• Named “capabilities” in the Linux documentation

• Kernel checks for privileges in process’s effective privilege set

• Kernel provides “hack” to mimic Unix access control
‣ Turns all privileges on when effective UID is root

‣ Turns all privileges off when effective UID is not root

‣ A process can disable this behavior using prctl()

• Linux kernel 6.17 uses 41 capabilities.
‣ “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)

Medium-grained Privileges (Linux)

13

Privilege Description

CAP_DAC_READSEARCH Override read permissions on files
Override search permissions on directories

CAP_DAC_OVERRIDE Override read, search, and write access on files and directories

CAP_CHOWN Change owner of files

CAP_SETUID Change real, effective, and saved UIDs to any value

Turning Privileges On and Off

14

• Programs do not need all operations to be privileged.
‣ The program’s functionality may not need privileges.

- Use privilege to open password file

- Don’t use privilege to open user preferences file

• Follow Saltzer and Schroeder Principle of Least Privilege
‣ Programs using fewer privileges tend to have fewer vulnerabilities.

Privilege Bracketing

15

Privileged
Execution

Non-privileged
Execution

vsTime

• Enable privileges before an privileged operation

• Disable privileges after the operation

What if attackers set EUID to 0 here?

Linux Privilege Bracketing

16

23
priv_raise(CAP_DAC_OVERRIDE)

open (“/dev/hd”);

priv_lower(CAP_DAC_OVERRIDE)

Real UID

Effective
UID

23

Saved
UID

prctl()

23

setresuid(23, 23, 23);

What if priv_raise() is exploited by attackers?

Process Privilege Sets

17

• Maximum privilege set: All allowed privileges

• Effective privilege set: Currently active privileges
‣ E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

‣ E.g., CAP_DAC_READSEARCH
• Process can add effective privilege if it is in maximum set.

• Process can remove privileges in maximum and effective.
•Challenge: Removing unneeded privileges at the earliest point.

Using Compiler to Enforce Least Privilege

18

• Programmers priv-bracket operations needing privileges

• Compiler analyzes and inserts calls to priv_remove()

• Model checker determines if system is capable of entering unsafe state.
‣ Assume attacker can exploit memory safety errors, e.g. buffer overflows

‣ Assume attacker can use system calls in program in any order

‣ Measured amount of execution spent with each privilege set

Security Analysis Results

19

Program
Unsafe State

Read /dev/mem Write /dev/mem Privileged
Port

Kill Process

passwd 100% 100% 0% 63%

ping 0% 0% 0% 0%

sshd 100% 100% ~0% 100%

su 88% 88% 0% 88%

thttpd 10% ~0% 10% ~0%

Why Do Programs Use Privileges Ineffectively?

20

• Programs originally designed for root user
‣ No reason to design program with least privilege

• Privileges needed late in execution

• System files are owned by root.
‣ Privileged processes access subset of system files.

‣ Root processes can access all system files even with no privileges!

Summary of Refactoring Strategies

21

• Switch UID early in execution to owner of needed files
‣ Use privilege to place file owner UID in saved UID

‣ Remove CAP_SETUID from maximum privilege set

‣ Can switch to file owner using setresuid() with no privilege

• Change owner of files to a unique unused UID
‣ Unprivileged process can now open only needed files

‣ Other system files inaccessible

Refactored Security Analysis Results

22

Program

Unsafe State

Read /dev/mem Write /dev/mem Privileged
Port Kill Process

passwd 100% 100% 0% 63%

Refactored
passwd 4% 4% 0% 4%

su 88% 88% 0% 88%

Refactored
su 1% 1% 0% 1%

Principle: Fault Compartmentalization

23

Separate individual components into smallest functional entity possible.
• These units contain faults to individual components.

• Allows abstraction and permission checks at boundaries.

• In practice, smallest functional entity can be too expensive.

A chatting app’s image processing module and audio processing module
are compartmentalized so that bugs in one module will not affect another.

Isolation vs. Compartmentalization

24

Compartmentalization builds on least privilege and isolation. Both properties
are most effective in combination: many small components that are isolated
and running and interacting with least privileges.

• Isolation is a fundamental mechanism.

• Compartmentalization is a design strategy/policy that often uses isolation.

‣ Emphasizes barriers/walls between components; often no intended interactions

‣ E.g., between processes, VMs, untrusted libs

Policy Definition Method (PDM)

25

PDMs identify subjects, objects, and permissions to enforce.

• Automation

• Policy languages

• Separation granularities

• Analysis techniques

• Subject selections

• Generality

Compartmentalization Abstractions

26

Key factors to consider

• A model of actions

• Trust models

• Target properties to enforce

• Composing with other abstractions

Enforcing Compartmentalization

27

• Software-based
‣ E.g., SFI, AutoPriv

• Hardware-based

• Hybrid
• Other considerations
‣ Granularity: byte-level to entire physical memory

‣ Supported number of domains

‣ Performance

‣ E.g., page-based, MPK

Evaluating Compartmentalization

28

• Security benefits

• Performance compared to a monolithic design

• Compatibility with existing software and programming idioms

• Usability of separated software

A6: Group Project: Paper Presentation and Discussion

29

• Four groups; each group picks one paper from a provided list.
‣ Other papers are allowed, as long as it is approved by the instructor.

• Deadline 1: Pick a paper by 11/19, Wednesday.
• Presentation (10 points)
‣ Students and the instructor will ask questions during the presentation.

‣ Everyone should contribute equally.

‣ Everyone in the same group receives the same score for slides and presentation.

‣ Teamwork evaluation is worth 2 points.

• Deadline 2: 12/1 before class.
• One presentation on 12/1 and three on 12/8.

Sanitizers

30

Memory Sanitizers

31

Spatial Memory Safety Bugs: Buffer Overflows

32

Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

Temporal Memory Safety Bugs

ptr

0x1000

0x10ff

Dereference of ptr is a
use-after-free (UAF) bug.

33

memory
objectFreeing the ptr again is a

double free bug.

Memory Safety Error: Accessing a
semantically illegitimate memory address

34

Mitigations for Memory Safety Errors

35

• Control-flow Integrity (CFI)

‣ Forward CFI for indirect function calls and jumps

‣ Backward CFI for return addresses

‣ Often allows bugs to happen and hide for a while; and missing bugs

• None of the approaches ensures detecting memory safety bugs!

• Testing & Fuzzing
‣ Challenging to have good coverage.

‣ Permit errors inside fault domains.
• Memory Isolation

• Address Space Layout Randomization
‣ Probabilistic safety; shown to be not very effective

Stronger memory safety:
Catch errors when they occur.

36

Sanitizer Goal: Crash Early and Quickly!

37

• Sanitizers instrument programs to check for violations, crash immediately.

• Fuzzers trigger bugs and record crashes, but not every bug crashes.

• Sanitizers enforce a security policy to crash the program upon violation.

• Sanitizers make bugs detectable (at least more likely).

Sanitizers enforce a policy, detect bugs early, and
increase testing effectiveness.

Address Sanitizer (ASan)

38

• Monitoring (sanitizing) every memory access to detect memory safety violations.

• Originally developed, and still maintained, by Google

• Available in LLVM and GCC

• Have found thousands of memory safety bugs.

ASan Algorithm

39

• Map regular memory to shadow memory.
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory indicates the validity of mapped regular memory.
• Before each memory access, check the target memory’s validity by

querying its mapped shadow memory’s status.

Optimization: Guard Zone/Page

40

• Place a guard zone before/after a data region.

• Guard zones are unmapped or not readable/writable.
‣ Access to guard zones are trapped by hardware.

• Assume Guard Zone’s size is GSize, a memory read/
write is safe if the address is in [DB-GSize, DL+GSize].

• Also called red zone

ASan Algorithm

41

• Map regular memory to shadow memory.
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory indicates the validity of mapped regular memory.
• Before each memory access, check the target memory’s validity by

querying its mapped shadow memory’s status.

Shadow Memory

42

Shadow Memory Mapping

43

• Newly allocated memory heap objects are typically aligned at a
8-byte boundary.

• Any aligned 8-byte of memory is in one of 9 states:
‣ The first k (0 <= k <= 8) bytes are addressable.

‣ The remaining (8 - k) bytes are not.

• These 9 states can be encoded into one byte.

Shadow Memory

44

• Newly allocated memory heap objects are typically aligned at a
8-byte boundary.

• Any aligned 8-byte of memory is in one of 9 states:
‣ The first k (0 <= k <= 8) bytes are addressable.

‣ The remaining (8 - k) bytes are not.

• These 9 states can be encoded into one byte.
• ASan reserves 1/8 of virtual address space to its shadow memory.
• Given a virtual address Addr, its shadow memory is computed

by (Addr >> 3) + Offset
‣ Offset is system/implementation-specific.

- ASLR must be taken into account when choosing Offset.
• Shadow memory is mapped to inaccessible memory.

Shadow Memory

45

An Example of Shadow Memory for x86-32 Linux

46

ASan Algorithm

47

• Map regular memory to shadow memory.
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory records the validity of mapped regular memory.
• Before each memory access, check its validity by querying its

mapped shadow memory status.

Optimization: Guard Zone/Page

48

• Place a guard zone before/after a data region.

• Guard zones are unmapped or not readable/writable.
‣ Access to guard zones are trapped by hardware.

• Assume Guard Zone’s size is GSize, a memory read/
write is safe if the address is in [DB-GSize, DL+GSize].

• Also called red zone

Redzones Between Valid Memory Objects

49

• Page-level redzones are too coarse-grained for memory objects.

• ASan uses small redzones between each valid memory object.
‣ Minimum: 32 bytes; default: 128 bytes

Object1 RZ2RZ1 Object2 RZ3 Object2 RZ4

Mapped to shadow memory indicating
they are not addressable.

‣ Larger redzones enable higher probability of detecting buffer overflows.

Instrumentation: 8-byte Access

50

unsigned long val = *p;

ShadowAddr = (p >> 3) + Offset;
if (*ShadowAddr != 0) {
 ReportAndCrash(Addr);
}

unsigned long val = *p;

• Accessing an 8-byte value from address p

Instrumentation: N-byte Access (N = 1, 2, 4)

51

ShadowAddr = (p >> 3) + Offset;
k = *ShadowAddr;
if (k != 0 && ((p & 7) + AccessSize > k)) {
 ReportAndCrash(p);
}

• Accessing an k-byte value from address p

… *p

Detect Use-After-Free Bugs

52

• After free() is called, ASan “poisons” the object’s shadow memory.
‣ Set the corresponding shadow memory as unaddressable

• Delay the free
‣ Maintain a quarantine pool for those to-be-free memory objects.

- Really free them when the pool is full.
• May miss UAF bugs

char *a = new char[1 << 20]; // 1MB
delete [] a; // <<< "free"
char *b = new char[1 << 28]; // 256MB
delete [] b; // drains the quarantine queue.
char *c = new char[1 << 20]; // 1MB
a[0] = 0; // "use". May land in ’c’.

How to detect buffer overflows
on stack/global?

53

Detecting Buffer Overflows on Stack and Global

54

• Stack and global objects are not necessarily aligned at 8-bytes boundary.

• ASan needs to poison redzones around such objects.

• For globals, redzones are created at compile time and poisoned at startup.

• For stack objects, redzones are created and poisoned at run-time.

Example of Instrumenting Stack

55

void foo() {
 char arr[10];
 // <function body>
}

void foo() {
 char rz1[32];
 char arr[10];
 char rz2[32-10+32];
 unsigned *shadow =
 (unsigned*)(((unsigned*)rz1>>3)+Offset);
 // poison the redzones around arr.
 shadow[0] = 0xffffffff; // rz1
 shadow[1] = 0xffff0200; // arr and rz2
 shadow[2] = 0xffffffff; // rz2
 // <function body>
 // un-poison all
 shadow[0] = shadow[1] = shadow[2] = 0;
}

Does it guarantee to detect buffer overflows?
What if a memory over-read/write strides over redzones?

Size of Redzone

56

• Larger redzones enables higher probability of detecting buffer overflows.
• However, higher performance overhead
‣ More memory consumption

‣ Slower execution time

- Larger redzones mean more memory writes to their shadow memory.

Misaligned Issue

57

int *a = new int[2]; // 8-aligned
int *u = (int*)((char*)a + 6);
*u = 1; // Access to range [6-9]

ShadowAddr = (p >> 3) + Offset;
k = *ShadowAddr;
if (k != 0 && ((p & 7) + AccessSize > k)) {
 ReportAndCrash(p);
}

K is 0 because 8 bytes of memory starting from
((p >> 3) << 3) are addressable.

• Assume memory accesses are aligned. However,

Conflict with Load Widening

58

• Load widening: A compiler optimization technique that combine
multiple smaller memory loads into one bigger (wider) load.

struct X { char a, b, c; };
void foo() {
 X x; ...
 ... = x.a + x.c;

• x.a + x.c may be compiled into one 4-byte load, causing ASan to
report an “error” (false positive).

• Solution: Disable this compiler optimization.

High Performance Cost (Reported by The 2012 Paper)

59

• 73% slowdown on average for SPEC CPU2006

• 3.37X memory consumption

• 2.5x code size bloating

Effective Bug-detection

60

How to implement ASan?

61

Compiler, Of Course!

Considerations for Engineering Sanitizers

62

• What types of memory bugs to detect?

• What kinds of operations to instrument?

• What metadata to maintain?

• What data structures to use to manage metadata?

• What is the performance overhead budget?

• What optimizations can we do?

• How is the compatibility with un-sanitized code?

Summary of ASan

63

• Using shadow memory to sanitize every memory access

• Detecting both spatial and temporal memory safety

• Implementation: Compiler instrumentations + run-time library support

• High performance and memory overhead

• Incomplete bug detection ability

Can we do better than ASan for security?

64

Of Course!

Memory Safety

65

• Memory buffers are allocated and deallocated during program execution.

‣ Bounds: The lower and upper addresses of the buffer

‣ Lifetime: When the buffer is valid for use.

• Each buffer occupies a contiguous range of memory addresses and also
has a lifetime.

- E.g., a buffer allocated by a function’s stack has a lifetime when the
function executes; should not be used after the function returns.

- E.g., a buffer that was created by malloc should not be accessed after
being freed.

Memory Safety: Expected vs. Abnormal Behaviors

66

• Expected behavior: A buffer should be accessed within its bounds
and only during its lifetime.
‣ Spatial memory safety: A buffer should be accessed within its bounds.

‣ Temporal memory safety: A buffer can be accessed only during its lifetime.

• Abnormal behavior:
‣ When spatial memory safety is violated, we have buffer overread/overwrite.

‣ When temporal memory safety is violated, we have use-after-free & invalid free.

Why are there so many memory safety
bugs and vulnerabilities?

67

Programming Correctly in C/C++ is (Extremely) Hard

68

Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Pointer: Capability to manipulate memory.
• For C, pointer is usually implemented as a virtual address.

C pointers can do almost arbitrary memory manipulation!
• The correctness is at the discretion of programmers.

ASan is one type of object-based
memory safety.

69

Pointer-based Memory Safety

70

• For each pointer, maintain information, called metadata, about
the pointed memory object

• Use the metadata to do validity checking for pointer dereference
• Ideally, we would like a mechanism that is
‣ Comprehensive, i.e., catching all memory safety errors

‣ Efficient, i.e., low execution time and memory overhead

‣ Automatic, i.e., minimal effort from programmers

‣ Backward-compatible, i.e., running smoothly with unchanged legacy code

Core Question:
How to manage safety metadata?

71

Managing Pointer’s Metadata

72

• What metadata is needed?

• How is a pointer mapped to / associated with its metadata?

• How to propagate metadata during pointer propagation (e.g., assignment)?

• How to update the metadata?

• How to perform memory safety checks using the metadata?

Spatial Memory Safety Bugs: Buffer Overflows

73

Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

legal illegal

Essential information:
‣ Starting address (base/lower bound)

‣ Ending address (upper bound)

‣ Object size

Metadata for Spatial Memory Safety

74

• Option 1: (base, upper_bound)
• Pointer dereference: Check if base <= p < upper_bound
• Option 2: (base, size)
• Pointer dereference: Check if base <= p < base + size
• More accurate check: base <= p && p + sizeof(referent) <= upper_bound

Temporal Memory Safety Bugs

ptr
Dereference of ptr is a

use-after-free (UAF) bug.

75

new
memory
object

Security risks
Information leaking

Data corruption

Denial of service

ptr1 0x1000

0x10ff

:42

Key-lock Checking for Temporal Memory Safety

ptr->num = 30;
check_if_key_matches_lock(ptr);

Charles Fischer and Richard LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.

1980 IEEE Transactions on Software Engineering

ptr memory
object

76

Assign memory object a lock and pointer a key
Initialize key and lock to the same value
Invalidate lock upon memory deallocation
Dynamically check if key matches lock

0x1000

0x10ff:42
X e.g. lock = 0;

Metadata for Pointers

77

• Spatial memory safety: base, upper_bound/size
• Temporal memory safety: key, lock

Where to put these metadata?

upper_bound

base

ptr memory
object

Managing Pointer’s Metadata

78

• What metadata is needed?

• How is a pointer mapped to / associated with its metadata?

• How to propagate metadata during pointer propagation (e.g., assignment)?

• How to update the metadata?

• How to perform memory safety checks using the metadata?

Disjoint Metadata Management:
SoftBoundCETS

79

SoftBoundCETS’ Metadata Management

80

• Record metadata in a disjoint memory region
• E.g., p and q points to different sub-fields in the same memory object,

so they maintain different base-upper bounds but the same key-lock.

SoftBoundCETS’ Metadata Management

81

• Record metadata in a disjoint memory region
• Implementation options: hash table, shadow memory
• More efficient option: A two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

, base, upper_bound

SoftBoundCETS: Creating Pointers

82

• Metadata are created when their pointers are created.
‣ E.g., “p = malloc(size);” becomes

‣ E.g., “free(p);” becomes

SoftBoundCETS: Pointer Arithmetic

83

• When an expression contains pointer arithmetic (e.g. ptr+index), array
indexing (e.g. &(ptr[index])), or pointer assignment (e.g., newptr = ptr;),
the resulting pointer inherits the metadata of the original pointer.

‣ E.g., “q = p + index;” becomes

SoftBoundCETS: Pointer Dereference

84

• Retrieve metadata and perform memory safety checks

SoftBoundCETS: Pointer Load & Store

85

Comprehensive Memory Safety

86

• Metadata is manipulated/accessed only through the additional
instrumentation added.

• Metadata is not corrupted and accurately depicts the region of
memory that a pointer can legally access.

• All memory accesses are conceptually checked before a dereference.

SoftBoundCETS

87

• Achieves full memory safety with good backward-compatibility
• However, very high performance overhead.

Why is this approach slow?

‣ ~75% on SPEC CPU2006, reported in 2015, based on LLVM-3.4.

‣ 140% on 8 C SPEC CPU2017 benchmarks, reported in 2024, based on LLVM-12

SoftBoundCETS’ Metadata Management

88

,base, upper_bound

• Use a two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

• Loading metadata:14 x86-64 instructions

• Storing metadata: 16 x86-64 instructions

Disjoint Metadata Management is Slow

89

Address Space

ptr

Fat Pointers

90

• Pointer representation carries metadata besides the raw pointer (address).

raw ptrFat pointer:
metadata

struct _safe_ptr {
 void *raw_ptr;
 void *base_addr;
 void *upper_bound;
 uint64_t key;
 void *lock_addr;
};

• One implementation

Example of Using Fat Pointers

91

0x1018

int arr[4];

Address Space

1

2

3

0x1008

0x1010

4
p1

Example of Using Fat Pointers

92

0x1018

int arr[4];

Address Space

lock:42
1

2

3

0x10080x1010
base: 0x1008
upper: 0x1018

key: 42
lock_addr: 0x1000 4

p1

Legacy libraries are unaware
of the new fat pointers.

How do fat pointers interact
with legacy library code?

93

Type Compatibility with Unchanged Code

94

struct safe_ptr {
 char *raw_ptr;
 char *base_addr;
 char *upper_bound;
 uint64_t key;
 void *lock_addr;
};

• One implementation

char *strchr(const char *s, int c);

How to pass a safe_ptr to strchr()?

strchr() returns a raw pointers.
How to make it a safe_ptr?

Memory Layout Compatibility with Unchanged Code

char *lib_foo(char **p, size_t n, …);

95

ptr1
ptr2

ptrn
……

Address Space

Memory Layout Compatibility with Unchanged Code

ptr1
ptr2

ptrn
……

96

char *lib_foo(char **p, size_t n, …);
Address Space

safe_ptr p

Memory Layout Compatibility with Unchanged Code

ptr1
metadata1

ptr2
metadata2

ptrn
……

metadatan

lib_foo would misinterpret metadata as pointers!

97

char *lib_foo(char **p, size_t n, …);
Address Space

safe_ptr p

Solutions to Backward Compatibility Issues

98

• Porting library functions using fat pointers
‣ Pros: complete and secure

‣ Cons: high programmer effort; not always viable

• Mixing using raw pointers and fat pointers
‣ Pros: easy to implement

‣ Cons: security hazards
• Hybrid of disjoint and in-place metadata
‣ Pros: secure

‣ Cons: complex and slow

Data Marshaling

meta-
data1

raw
ptr1

meta-
data2

raw
ptr2 …… meta-

datan
raw
ptrn

99

Data Marshaling

meta-
data1

raw
ptr1

meta-
data2

raw
ptr2 …… meta-

datan
raw
ptrn

meta-
data1

raw
ptr1

meta-
data2

raw
ptr2 …… meta-

datan
raw
ptrn

+

Data marshaling

100

Two Important Questions on Data Marshaling

meta-
data1

raw
ptr1

meta-
data2

raw
ptr2 …… meta-

datan
raw
ptrn

meta-
data1

raw
ptr1

meta-
data2

raw
ptr2 …… meta-

datan
raw
ptrn

Data marshaling

+

101

Q1. How much programmer effort is required?

Q2. What is the performance penalty?

SoftBoundCETS’ Metadata Management

102

,base, upper_bound

• Use a two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

Is the disjoint metadata scheme completely
free of backward-compatibility issues?

103

Compatibility Issues with Disjoint Metadata Scheme

104

• qsort: Sort an array of n item, each of size width, using function compar.
‣ E.g., Use a greater_than() function to sort an array of n integers.

void qsort(void *base, size_t n, size_t width, int (*compar)(const void *, const void *));

Label-based CFI

105

• Assign and insert a label (ID) before each indirect transfer destination

• Before executing an indirect transfer, check the destination’s label

Indirect forward transfer
Direct forward transfer

Backward transfer

‣ Similar to using stack canaries / shadow stacks

Compatibility Issues with Disjoint Metadata Scheme

106

void qsort(void *base, size_t n, size_t width, int (*compar)(const void *, const void *));

• What about sorting an array of pointers?

‣ SoftBound’s solution: Rewrite qsort() considering the associated metadata

• qsort: Sort an array of n item, each of size width, using function compar.
‣ E.g., Use a greater_than() function to sort an array of n integers.

‣ SoftBoundCETS’ metadata lookup procedure will not work!
- It uses a pointer’s address to index the metadata.

Strengths and Weaknesses of Fat Pointers

107

• Good performance

• Difficult to interoperate with libraries that do not use fat pointers
‣ Run-time can (very) quickly finds metadata to use.

‣ Need wrappers to convert fat pointers to raw pointers and vice versa
‣ Need to change memory layout of data structures

