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A2: Is Less Really More?

2

• Suggested future research directions:
‣ Improve how we measure/evaluate the security of binaries

‣ Improve debloating tools to generate more secure code in the first place



A3: Exploiting Format String Vulnerabilities
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Format String Attacks
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int main(int argc, char *argv[]) {                                                  
    if (argc > 1) {                                                                 
        printf(argv[1]);                                                            
    }                                                                               
}

• What about the following simple program for echoing user input?

• Appears to be normal
• However, what would happen if the input is “hello%d%d%d%d%d%d%d”?
‣ i.e. printf(“hello%d%d%d%d%d%d%d”);
‣ It would print numbers from five registers and the stack.

- Allows attackers to peak unintended data
• What if arg[1] is “hello%s”?
‣ Likely a segmentation fault

confidentiality vulnerability

availability vulnerability



x86-64/AMD64 Calling Convention
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How functions/subroutines pass arguments and return values at the 
macro-architecture level.

void foo() {                                                                        
    ...                                                                             
    bar(a, b, c, d, e, f, g, h);                                                    
    ...                                                                             
}                                                                                   
                                                                                    
long bar(long a, long b, long c, long d,                                            
         long e, long f, long g, long h) {                                       
   long xx = a * b * c * d * e * f * g * h;                                         
   long yy = a + b + c + d + e + f + g + h;                                         
   long zz = utilfunc(xx, yy, xx % yy);                                             
   return zz + 20;                                                                  
} 

• Where to put all the arguments?

• Where to put the return value?

• Arguments are passed
‣ in registers: rdi, rsi, rdx, rcx, r8, r9

‣ then via stack

• Return value is passed via 
‣ in registers: rax, rdx

‣ then via stack



Outline
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• Review: Least Privilege Principle & Software Compartmentalization 
• Address Sanitizer 
• Pointer-based Memory Safety



Principle of Least Privilege
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•What are privileges? 
•What problems do current systems have with privileges? 
•What can we do to more safely use privileges?



Privileges
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• Override (i.e., make exceptions to) access control rules

• Usually a thread or process attribute



Why Do We Need Privileges?
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• Real systems need “exceptions” to access control rules.
‣ Installing new software

‣ Change of policy

‣ Change of ownership

‣ Fix incorrect configurations

‣ Help users solve problems



Privilege Granularity
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Coarse Grain Fine GrainMedium Grain



Coarse-grained Privileges
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• All or nothing

• Effective UID of 0 (root) overrides all access controls.



Medium-grained Privileges (Linux)
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• Named “capabilities” in the Linux documentation

• Kernel checks for privileges in process’s effective privilege set

• Kernel provides “hack” to mimic Unix access control
‣ Turns all privileges on when effective UID is root

‣ Turns all privileges off when effective UID is not root

‣ A process can disable this behavior using prctl()

• Linux kernel 6.17 uses 41 capabilities.
‣ “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)



Medium-grained Privileges (Linux)
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Privilege Description

CAP_DAC_READSEARCH Override read permissions on files
Override search permissions on directories

CAP_DAC_OVERRIDE Override read, search, and write access on files and directories

CAP_CHOWN Change owner of files

CAP_SETUID Change real, effective, and saved UIDs to any value



Turning Privileges On and Off
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• Programs do not need all operations to be privileged.
‣ The program’s functionality may not need privileges.

- Use privilege to open password file

- Don’t use privilege to open user preferences file

• Follow Saltzer and Schroeder Principle of Least Privilege
‣ Programs using fewer privileges tend to have fewer vulnerabilities.



Privilege Bracketing
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Privileged
Execution

Non-privileged
Execution

vsTime

• Enable privileges before an privileged operation

• Disable privileges after the operation

What if attackers set EUID to 0 here?



Linux Privilege Bracketing
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23
priv_raise(CAP_DAC_OVERRIDE)

open (“/dev/hd”);

priv_lower(CAP_DAC_OVERRIDE)

Real UID

Effective 
UID

23

Saved 
UID

prctl()

23

setresuid(23, 23, 23);

What if priv_raise() is exploited by attackers?



Process Privilege Sets
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• Maximum privilege set: All allowed privileges

• Effective privilege set: Currently active privileges
‣ E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

‣ E.g., CAP_DAC_READSEARCH
• Process can add effective privilege if it is in maximum set.

• Process can remove privileges in maximum and effective.
•Challenge: Removing unneeded privileges at the earliest point.



Using Compiler to Enforce Least Privilege
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• Programmers priv-bracket operations needing privileges

• Compiler analyzes and inserts calls to priv_remove()

• Model checker determines if system is capable of entering unsafe state.
‣ Assume attacker can exploit memory safety errors, e.g. buffer overflows

‣ Assume attacker can use system calls in program in any order

‣ Measured amount of execution spent with each privilege set



Security Analysis Results

19

Program
Unsafe State

Read /dev/mem Write /dev/mem Privileged 
Port

Kill Process

passwd 100% 100% 0% 63%

ping 0% 0% 0% 0%

sshd 100% 100% ~0% 100%

su 88% 88% 0% 88%

thttpd 10% ~0% 10% ~0%



Why Do Programs Use Privileges Ineffectively?
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• Programs originally designed for root user
‣ No reason to design program with least privilege

•  Privileges needed late in execution

• System files are owned by root.
‣ Privileged processes access subset of system files.

‣ Root processes can access all system files even with no privileges!



Summary of Refactoring Strategies
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• Switch UID early in execution to owner of needed files
‣ Use privilege to place file owner UID in saved UID

‣ Remove CAP_SETUID from maximum privilege set

‣ Can switch to file owner using setresuid() with no privilege

• Change owner of files to a unique unused UID
‣ Unprivileged process can now open only needed files

‣ Other system files inaccessible



Refactored Security Analysis Results
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Program

Unsafe State

Read /dev/mem Write /dev/mem Privileged 
Port Kill Process

passwd 100% 100% 0% 63%

Refactored 
passwd 4% 4% 0% 4%

su 88% 88% 0% 88%

Refactored 
su 1% 1% 0% 1%



Principle: Fault Compartmentalization
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Separate individual components into smallest functional entity possible.
• These units contain faults to individual components.

• Allows abstraction and permission checks at boundaries.

• In practice, smallest functional entity can be too expensive.

A chatting app’s image processing module and audio processing module 
are compartmentalized so that bugs in one module will not affect another.



Isolation vs. Compartmentalization
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Compartmentalization builds on least privilege and isolation. Both properties 
are most effective in combination: many small components that are isolated 
and running and interacting with least privileges.

• Isolation is a fundamental mechanism.


• Compartmentalization is a design strategy/policy that often uses isolation.

‣ Emphasizes barriers/walls between components; often no intended interactions

‣ E.g., between processes, VMs, untrusted libs



Policy Definition Method (PDM)
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PDMs identify subjects, objects, and permissions to enforce.

• Automation

• Policy languages

• Separation granularities

• Analysis techniques

• Subject selections

• Generality



Compartmentalization Abstractions
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Key factors to consider 

• A model of actions

• Trust models

• Target properties to enforce

• Composing with other abstractions



Enforcing Compartmentalization
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• Software-based
‣ E.g., SFI, AutoPriv

• Hardware-based

• Hybrid
• Other considerations
‣ Granularity: byte-level to entire physical memory

‣ Supported number of domains

‣ Performance 

‣ E.g., page-based, MPK



Evaluating Compartmentalization
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• Security benefits

• Performance compared to a monolithic design

• Compatibility with existing software and programming idioms

• Usability of separated software



A6: Group Project: Paper Presentation and Discussion
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• Four groups; each group picks one paper from a provided list.
‣ Other papers are allowed, as long as it is approved by the instructor.

• Deadline 1: Pick a paper by 11/19, Wednesday.
• Presentation (10 points)
‣ Students and the instructor will ask questions during the presentation.

‣ Everyone should contribute equally.

‣ Everyone in the same group receives the same score for slides and presentation.

‣ Teamwork evaluation is worth 2 points.

• Deadline 2: 12/1 before class.
• One presentation on 12/1 and three on 12/8.



Sanitizers
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Memory Sanitizers
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Spatial Memory Safety Bugs: Buffer Overflows
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Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2



Temporal Memory Safety Bugs

ptr

0x1000

0x10ff

Dereference of ptr is a 
use-after-free (UAF) bug.

33

memory 
objectFreeing the ptr again is a 

double free bug.



Memory Safety Error: Accessing a 
semantically illegitimate memory address
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Mitigations for Memory Safety Errors
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• Control-flow Integrity (CFI)

‣ Forward CFI for indirect function calls and jumps

‣ Backward CFI for return addresses

‣ Often allows bugs to happen and hide for a while; and missing bugs

• None of the approaches ensures detecting memory safety bugs!

• Testing & Fuzzing
‣ Challenging to have good coverage.

‣ Permit errors inside fault domains.
• Memory Isolation

• Address Space Layout Randomization
‣ Probabilistic safety; shown to be not very effective



Stronger memory safety: 
Catch errors when they occur.

36



Sanitizer Goal: Crash Early and Quickly!
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• Sanitizers instrument programs to check for violations, crash immediately.

• Fuzzers trigger bugs and record crashes, but not every bug crashes.

• Sanitizers enforce a security policy to crash the program upon violation.

• Sanitizers make bugs detectable (at least more likely).

Sanitizers enforce a policy, detect bugs early, and 
increase testing effectiveness.



Address Sanitizer (ASan)
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• Monitoring (sanitizing) every memory access to detect memory safety violations.

• Originally developed, and still maintained, by Google

• Available in LLVM and GCC

• Have found thousands of memory safety bugs.



ASan Algorithm
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• Map regular memory to shadow memory.
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory indicates the validity of mapped regular memory.
• Before each memory access, check the target memory’s validity by 

querying its mapped shadow memory’s status.



Optimization: Guard Zone/Page

40

• Place a guard zone before/after a data region.

• Guard zones are unmapped or not readable/writable.
‣ Access to guard zones are trapped by hardware.

• Assume Guard Zone’s size is GSize, a memory read/
write is safe if the address is in [DB-GSize, DL+GSize].

• Also called red zone



ASan Algorithm

41

• Map regular memory to shadow memory.
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory indicates the validity of mapped regular memory.
• Before each memory access, check the target memory’s validity by 

querying its mapped shadow memory’s status.



Shadow Memory

42



Shadow Memory Mapping

43

• Newly allocated memory heap objects are typically aligned at a 
8-byte boundary.

• Any aligned 8-byte of memory is in one of 9 states:
‣ The first k (0 <= k <= 8) bytes are addressable.

‣ The remaining (8 - k) bytes are not.

• These 9 states can be encoded into one byte.



Shadow Memory

44

• Newly allocated memory heap objects are typically aligned at a 
8-byte boundary.

• Any aligned 8-byte of memory is in one of 9 states:
‣ The first k (0 <= k <= 8) bytes are addressable.

‣ The remaining (8 - k) bytes are not.

• These 9 states can be encoded into one byte.
• ASan reserves 1/8 of virtual address space to its shadow memory.
• Given a virtual address Addr, its shadow memory is computed 

by (Addr >> 3) + Offset
‣ Offset is system/implementation-specific.

- ASLR must be taken into account when choosing Offset.
• Shadow memory is mapped to inaccessible memory.



Shadow Memory

45



An Example of Shadow Memory for x86-32 Linux
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ASan Algorithm

47

• Map regular memory to shadow memory.
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory records the validity of mapped regular memory.
• Before each memory access, check its validity by querying its 

mapped shadow memory status.



Optimization: Guard Zone/Page

48

• Place a guard zone before/after a data region.

• Guard zones are unmapped or not readable/writable.
‣ Access to guard zones are trapped by hardware.

• Assume Guard Zone’s size is GSize, a memory read/
write is safe if the address is in [DB-GSize, DL+GSize].

• Also called red zone



Redzones Between Valid Memory Objects 
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• Page-level redzones are too coarse-grained for memory objects.

• ASan uses small redzones between each valid memory object.
‣ Minimum: 32 bytes; default: 128 bytes

Object1 RZ2RZ1 Object2 RZ3 Object2 RZ4

Mapped to shadow memory indicating 
they are not addressable.

‣ Larger redzones enable higher probability of detecting buffer overflows.



Instrumentation: 8-byte Access
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unsigned long val = *p; 

ShadowAddr = (p >> 3) + Offset;                                                     
if (*ShadowAddr != 0) {                                                             
    ReportAndCrash(Addr);                                                           
} 

unsigned long val = *p; 

• Accessing an 8-byte value from address p



Instrumentation: N-byte Access (N = 1, 2, 4)
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ShadowAddr = (p >> 3) + Offset;                                                     
k = *ShadowAddr;                                                                 
if (k != 0 && ((p & 7) + AccessSize > k)) {                                   
    ReportAndCrash(p);                                                           
} 

• Accessing an k-byte value from address p

… *p



Detect Use-After-Free Bugs
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• After free() is called, ASan “poisons” the object’s shadow memory.
‣ Set the corresponding shadow memory as unaddressable

• Delay the free
‣ Maintain a quarantine pool for those to-be-free memory objects.

- Really free them when the pool is full.
• May miss UAF bugs

char *a = new char[1 << 20]; // 1MB                                              
delete [] a; // <<< "free"                                                       
char *b = new char[1 << 28]; // 256MB                                            
delete [] b; // drains the quarantine queue.                                     
char *c = new char[1 << 20]; // 1MB                                              
a[0] = 0; // "use". May land in ’c’. 



How to detect buffer overflows 
on stack/global?

53



Detecting Buffer Overflows on Stack and Global

54

• Stack and global objects are not necessarily aligned at 8-bytes boundary.

• ASan needs to poison redzones around such objects.

• For globals, redzones are created at compile time and poisoned at startup.

• For stack objects, redzones are created and poisoned at run-time.



Example of Instrumenting Stack
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void foo() {                                                                     
    char arr[10];                                                                  
    // <function body>                                                           
}

void foo() {                                                                     
    char rz1[32];                                                                 
    char arr[10];                                                            
    char rz2[32-10+32];                                                          
    unsigned *shadow =                                                           
        (unsigned*)(((unsigned*)rz1>>3)+Offset);                                      
    // poison the redzones around arr.                                           
    shadow[0] = 0xffffffff; // rz1                                               
    shadow[1] = 0xffff0200; // arr and rz2                                       
    shadow[2] = 0xffffffff; // rz2                                               
    // <function body>                                                          
    // un-poison all                                                         
    shadow[0] = shadow[1] = shadow[2] = 0;                                       
}

Does it guarantee to detect buffer overflows?
What if a memory over-read/write strides over redzones?



Size of Redzone
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• Larger redzones enables higher probability of detecting buffer overflows.
• However, higher performance overhead
‣ More memory consumption

‣ Slower execution time

- Larger redzones mean more memory writes to their shadow memory.



Misaligned Issue
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int *a = new int[2]; // 8-aligned                                                
int *u = (int*)((char*)a + 6);                                                   
*u = 1; // Access to range [6-9]

ShadowAddr = (p >> 3) + Offset;                                                     
k = *ShadowAddr;                                                                 
if (k != 0 && ((p & 7) + AccessSize > k)) {                                   
    ReportAndCrash(p);                                                           
} 

K is 0 because 8 bytes of memory starting from 
((p >> 3) << 3) are addressable.

• Assume memory accesses are aligned. However,



Conflict with Load Widening
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• Load widening: A compiler optimization technique that combine 
multiple smaller memory loads into one bigger (wider) load.

struct X { char a, b, c; };                                                      
void foo() {                                                                     
    X x; ...                                                                     
    ... = x.a + x.c;                                                             

• x.a + x.c may be compiled into one 4-byte load, causing ASan to 
report an “error” (false positive).

• Solution: Disable this compiler optimization.



High Performance Cost (Reported by The 2012 Paper)
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• 73% slowdown on average for SPEC CPU2006

• 3.37X memory consumption

• 2.5x code size bloating



Effective Bug-detection
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How to implement ASan?
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Compiler, Of Course!



Considerations for Engineering Sanitizers
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• What types of memory bugs to detect?

• What kinds of operations to instrument?

• What metadata to maintain?

• What data structures to use to manage metadata?

• What is the performance overhead budget?

• What optimizations can we do?

• How is the compatibility with un-sanitized code?



Summary of ASan
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• Using shadow memory to sanitize every memory access

• Detecting both spatial and temporal memory safety

• Implementation: Compiler instrumentations + run-time library support

• High performance and memory overhead

• Incomplete bug detection ability



Can we do better than ASan for security?
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Of Course!



Memory Safety
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• Memory buffers are allocated and deallocated during program execution.

‣ Bounds: The lower and upper addresses of the buffer

‣ Lifetime: When the buffer is valid for use.

• Each buffer occupies a contiguous range of memory addresses and also 
has a lifetime.

- E.g., a buffer allocated by a function’s stack has a lifetime when the 
function executes; should not be used after the function returns.

- E.g., a buffer that was created by malloc should not be accessed after 
being freed.



Memory Safety: Expected vs. Abnormal Behaviors
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• Expected behavior: A buffer should be accessed within its bounds 
and only during its lifetime.
‣ Spatial memory safety: A buffer should be accessed within its bounds.

‣ Temporal memory safety: A buffer can be accessed only during its lifetime.

• Abnormal behavior:
‣ When spatial memory safety is violated, we have buffer overread/overwrite.

‣ When temporal memory safety is violated, we have use-after-free & invalid free.



Why are there so many memory safety 
bugs and vulnerabilities?

67



Programming Correctly in C/C++ is (Extremely) Hard
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Simple and primitive language features

• Pointers
• Basic control flow (conditional branches, loops, etc.)

• Basic data types (char, integer, boolean, etc.)
• struct

Pointer: Capability to manipulate memory.
• For C, pointer is usually implemented as a virtual address.

C pointers can do almost arbitrary memory manipulation!
• The correctness is at the discretion of programmers.



ASan is one type of object-based 
memory safety.

69



Pointer-based Memory Safety

70

• For each pointer, maintain information, called metadata, about 
the pointed memory object

• Use the metadata to do validity checking for pointer dereference
• Ideally, we would like a mechanism that is
‣ Comprehensive, i.e., catching all memory safety errors

‣ Efficient, i.e., low execution time and memory overhead

‣ Automatic, i.e., minimal effort from programmers

‣ Backward-compatible, i.e., running smoothly with unchanged legacy code



Core Question: 
How to manage safety metadata?

71



Managing Pointer’s Metadata
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• What metadata is needed?

• How is a pointer mapped to / associated with its metadata?

• How to propagate metadata during pointer propagation (e.g., assignment)?

• How to update the metadata?

• How to perform memory safety checks using the metadata?



Spatial Memory Safety Bugs: Buffer Overflows
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Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

legal illegal

Essential information:
‣ Starting address (base/lower bound)

‣ Ending address (upper bound)

‣ Object size



Metadata for Spatial Memory Safety
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• Option 1: (base, upper_bound)
• Pointer dereference: Check if base <= p < upper_bound
• Option 2: (base, size)
• Pointer dereference: Check if base <= p < base + size
• More accurate check: base <= p && p + sizeof(referent) <= upper_bound



Temporal Memory Safety Bugs

ptr
Dereference of ptr is a 

use-after-free (UAF) bug.

75

new 
memory 
object

Security risks 
Information leaking

Data corruption

Denial of service

ptr1 0x1000

0x10ff



:42

Key-lock Checking for Temporal Memory Safety

ptr->num = 30;
check_if_key_matches_lock(ptr);

Charles Fischer and Richard LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.

1980 IEEE Transactions on Software Engineering

ptr memory 
object

76

Assign memory object a lock and pointer a key
Initialize key and lock to the same value
Invalidate lock upon memory deallocation
Dynamically check if key matches lock

0x1000

0x10ff:42
X e.g. lock = 0;



Metadata for Pointers
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• Spatial memory safety: base, upper_bound/size 
• Temporal memory safety: key, lock

Where to put these metadata?

upper_bound

base

ptr memory 
object



Managing Pointer’s Metadata
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• What metadata is needed?

• How is a pointer mapped to / associated with its metadata?

• How to propagate metadata during pointer propagation (e.g., assignment)?

• How to update the metadata?

• How to perform memory safety checks using the metadata?



Disjoint Metadata Management: 
SoftBoundCETS

79



SoftBoundCETS’ Metadata Management

80

• Record metadata in a disjoint memory region
• E.g., p and q points to different sub-fields in the same memory object, 

so they maintain different base-upper bounds but the same key-lock.



SoftBoundCETS’ Metadata Management
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• Record metadata in a disjoint memory region
• Implementation options: hash table, shadow memory
• More efficient option: A two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

, base, upper_bound



SoftBoundCETS: Creating Pointers

82

• Metadata are created when their pointers are created.
‣ E.g., “p = malloc(size);” becomes

‣ E.g., “free(p);” becomes



SoftBoundCETS: Pointer Arithmetic
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• When an expression contains pointer arithmetic (e.g. ptr+index), array 
indexing (e.g. &(ptr[index])), or pointer assignment (e.g., newptr = ptr;), 
the resulting pointer inherits the metadata of the original pointer.

‣ E.g., “q = p + index;” becomes



SoftBoundCETS: Pointer Dereference
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• Retrieve metadata and perform memory safety checks



SoftBoundCETS: Pointer Load & Store

85



Comprehensive Memory Safety

86

• Metadata is manipulated/accessed only through the additional 
instrumentation added.

• Metadata is not corrupted and accurately depicts the region of 
memory that a pointer can legally access.

• All memory accesses are conceptually checked before a dereference.



SoftBoundCETS
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• Achieves full memory safety with good backward-compatibility
• However, very high performance overhead.

Why is this approach slow?

‣ ~75% on SPEC CPU2006, reported in 2015, based on LLVM-3.4.

‣ 140% on 8 C SPEC CPU2017 benchmarks, reported in 2024, based on LLVM-12



SoftBoundCETS’ Metadata Management

88

,base, upper_bound

• Use a two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

• Loading metadata:14 x86-64 instructions

• Storing metadata: 16 x86-64 instructions



Disjoint Metadata Management is Slow

89

Address Space

ptr



Fat Pointers

90

• Pointer representation carries metadata besides the raw pointer (address).

raw ptrFat pointer:
metadata

struct _safe_ptr {                                                                                   
    void *raw_ptr;                                                                                      
    void *base_addr;                                                                                    
    void *upper_bound;                                                                                  
    uint64_t key;                                                                                       
    void *lock_addr;                                                                                 
};

• One implementation



Example of Using Fat Pointers

91

0x1018

int arr[4];

Address Space

1

2

3

0x1008

0x1010

4
p1



Example of Using Fat Pointers

92

0x1018

int arr[4];

Address Space

lock:42
1

2

3

0x10080x1010
base: 0x1008 
upper: 0x1018 

key: 42 
lock_addr: 0x1000  4

p1



Legacy libraries are unaware 
of the new fat pointers.

How do fat pointers interact 
with legacy library code?

93



Type Compatibility with Unchanged Code

94

struct safe_ptr {                                                                                   
    char *raw_ptr;                                                                                      
    char *base_addr;                                                                                    
    char *upper_bound;                                                                                  
    uint64_t key;                                                                                       
    void *lock_addr;                                                                                 
};

• One implementation

char *strchr(const char *s, int c);

How to pass a safe_ptr to strchr()?

strchr() returns a raw pointers. 
How to make it a safe_ptr?



Memory Layout Compatibility with Unchanged Code

char *lib_foo(char **p, size_t n, …);

95

ptr1
ptr2

ptrn
……

Address Space



Memory Layout Compatibility with Unchanged Code

ptr1
ptr2

ptrn
……

96

char *lib_foo(char **p, size_t n, …);
Address Space

safe_ptr p



Memory Layout Compatibility with Unchanged Code

ptr1
metadata1

ptr2
metadata2

ptrn
……

metadatan

lib_foo would misinterpret metadata as pointers!

97

char *lib_foo(char **p, size_t n, …);
Address Space

safe_ptr p



Solutions to Backward Compatibility Issues
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• Porting library functions using fat pointers
‣ Pros: complete and secure

‣ Cons: high programmer effort; not always viable

• Mixing using raw pointers and fat pointers
‣ Pros: easy to implement

‣ Cons: security hazards
• Hybrid of disjoint and in-place metadata
‣ Pros: secure

‣ Cons: complex and slow



Data Marshaling

meta-
data1

raw 
ptr1

meta-
data2

raw 
ptr2 …… meta-

datan
raw 
ptrn

99



Data Marshaling

meta-
data1

raw 
ptr1

meta-
data2

raw 
ptr2 …… meta-

datan
raw 
ptrn

meta-
data1

raw 
ptr1

meta-
data2

raw 
ptr2 …… meta-

datan
raw 
ptrn

+

Data marshaling

100



Two Important Questions on Data Marshaling

meta-
data1

raw 
ptr1

meta-
data2

raw 
ptr2 …… meta-

datan
raw 
ptrn

meta-
data1

raw 
ptr1

meta-
data2

raw 
ptr2 …… meta-

datan
raw 
ptrn

Data marshaling

+
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Q1. How much programmer effort is required?

Q2. What is the performance penalty?



SoftBoundCETS’ Metadata Management

102

,base, upper_bound

• Use a two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index



Is the disjoint metadata scheme completely 
free of backward-compatibility issues?

103



Compatibility Issues with Disjoint Metadata Scheme

104

• qsort: Sort an array of n item, each of size width, using function compar.
‣ E.g., Use a greater_than() function to sort an array of n integers.

void qsort(void *base, size_t n, size_t width, int (*compar)(const void *, const void *)); 



Label-based CFI

105

• Assign and insert a label (ID) before each indirect transfer destination

• Before executing an indirect transfer, check the destination’s label

Indirect forward transfer
Direct forward transfer

Backward transfer

‣ Similar to using stack canaries / shadow stacks



Compatibility Issues with Disjoint Metadata Scheme
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void qsort(void *base, size_t n, size_t width, int (*compar)(const void *, const void *)); 

• What about sorting an array of pointers?

‣ SoftBound’s solution: Rewrite qsort() considering the associated metadata

• qsort: Sort an array of n item, each of size width, using function compar.
‣ E.g., Use a greater_than() function to sort an array of n integers.

‣ SoftBoundCETS’ metadata lookup procedure will not work!
- It uses a pointer’s address to index the metadata.



Strengths and Weaknesses of Fat Pointers

107

• Good performance

• Difficult to interoperate with libraries that do not use fat pointers
‣ Run-time can (very) quickly finds metadata to use.

‣ Need wrappers to convert fat pointers to raw pointers and vice versa
‣ Need to change memory layout of data structures


