CSCI 4907/6545 Software Security
Fall 2025

Instructor: Jie Zhou

Department of Computer Science
George Washington University

GW

A2: Is Less Really More?

* Suggested future research directions:

> [mprove how we measure/evaluate the security of binaries
> Improve debloating tools to generate more secure code in the first place

A3: Exploiting Format String Vulnerabilities

char goodPassword() {
int good='N";
int xp = &good;
fgets(Password, sizeof(Password), stdin); // Get input from keyboard

printf("Password=");
printf(Password);

printf("\n");

return (char) (xp);

Format String Attacks

* What about the following simple program for echoing user input?

int main(int argc, char xargv[]) {
if (argc > 1) A
printf(argv[1]);
}

}

* Appears to be normal

 However, what would happen if the input is “he L L0%d%d%d%d%d%d%d " ?
> j.e. printf(“hello%d%d%sd%sd%d%sd%sd”) ;
> [t would print numbers from five registers and the stack.

- Allows attackers to peak unintended data confidentiality vulnerability
e Whatifarg[1] is “hel10%s"?

> Likely a segmentation fault availability vulnerability

x86-64/AMDG64 Calling Convention

. How functions/subroutines pass arguments and return values at the
macro-architecture level.

* Where to put all the arguments??
* \Where to put the return value?

void foo() {

bar(a, b, ¢, d, e, f, g, h);

; * Arguments are passed
tong bar{long a, ltong b, long ¢, tong d, > in registers: rdi, rsi, rdx, rcx, r8, r9
long e, long f, long g, long h) {
'ongxx—a*b*c*d*e*f*g*h; » then via stack
longyy=a+b+c+d+e+f + g+ h; _ _
long zz = utilfunc(xx, yy, XX % yy); * Return value Is passed via
return zz + 20; : :
\ > In registers: rax, rdx

» then via stack

Outline

* Review: Least Privilege Principle & Software Compartmentalization
e Address Sanitizer
e Pointer-based Memory Safety

Principle of Least Privilege

 What are privileges?
 What problems do current systems have with privileges?

 What can we do to more safely use privileges?

Privileges

priv-i-lege | 'priv(e)li |
noun

a special right, advantage, or immunity granted or available only to a particular person or group: education is a right, not a privilege |
[mass noun] : he has been accustomed all his life to wealth and privilege.

* Override (i.e., make exceptions to) access control rules
* Usually a thread or process attribute

Why Do We Need Privileges?

* Real systems need “exceptions” to access control rules.

> [nstalling new software

> Change of policy

> Change of ownership

> Fix incorrect configurations
> Help users solve problems

Privilege Granularity

)

Coarse Grain

.

Medium Grain

.

Fine Grain

10

Coarse-grained Privileges

* All or nothing
» Effective UID of O (root) overrides all access controls.

11

Medium-grained Privileges (Linux)

* Named “capabilities” in the Linux documentation
» Kernel checks for privileges in process’s effective privilege set

* Kernel provides “hack” to mimic Unix access control

> Turns all privileges on when effective UID is root

> Turns all privileges off when effective UID is not root

> A process can disable this behavior using prct1()
e Linux kernel 6.17 uses 41 capabilities.

> “cat /proc/sys/kernel/cap_last_cap” prints the last capability ID (start from 0)

12

Medium-grained Privileges (Linux)

Privilege Description

Override read permissions on files
Override search permissions on directories

CAP_DAC_READSEARCH

CAP DAC OVERRIDE Override read, search, and write access on files and directories

CAP_CHOWN Change owner of files

CAP_SETUID Change real, effective, and saved UlDs to any value

13

Turning Privileges On and Off

* Programs do not need all operations to be privileged.

> The program’s functionality may not need privileges.

- Use privilege to open password file
- Don’t use privilege to open user preferences file

* Follow Saltzer and Schroeder Principle of Least Privilege
> Programs using fewer privileges tend to have fewer vulnerabillities.

14

Privilege Bracketing

* Enable privileges before an privileged operation
* Disable privileges after the operation

Privileged What /f attackers set EUID to O here?
Execution
Time
Non-privileged
Execution

15

Linux Privilege Bracketing

prctl()
Real UID [ole!
setresuid(23, 23, 23);

Effective
UlD 23

priv_raise(CAP.DAC OVERRIDE)

Saved
UID 23 open (“/dev/hd”);

priv_lower(CAP. DAC OVERRIDE)

What if priv_raise() is exploited by attackers?

16

Process Privilege Sets

* Maximum privilege set: All allowed privileges
> E.g., CAP_DAC_READSEARCH, CAP_DAC_OVERRIDE

e Effective privilege set: Currently active privileges
> E.g., CAP_DAC_READSEARCH

* Process can add effective privilege if it is in maximum set.
* Process can remove privileges in maximum and effective.

e Challenge: Removing unneeded privileges at the earliest point.

17

Using Compiler to Enforce Least Privilege

* Programmers priv-bracket operations needing privileges
« Compiler analyzes and inserts calls to priv_remove()
* Model checker determines if system is capable of entering unsafe state.

> Assume attacker can exploit memory safety errors, e.g. buffer overflows
> Assume attacker can use system calls in program in any order
> Measured amount of execution spent with each privilege set

18

Security Analysis Results

Unsafe State

Program
5 Read /dev/mem | Write /dev/mem Pr1v11e;c;ed Kill Process
Por

passwd 100% 100% 63%

ping 0% 0% 0% 0%
sshd 100% 100% ~0% 100%
su 88% 88% 0% 88%

thttpd 10% ~0% 10% ~0%

Why Do Programs Use Privileges Ineffectively?

* Programs originally designed for root user
> No reason to design program with least privilege
» System files are owned by root.

> Privileged processes access subset of system files.
> Root processes can access all system files even with no privileges!

* Privileges needed late in execution

20

Summary of Refactoring Strategies

* Switch UID early in execution to owner of needed files

> Use privilege to place file owner UID in saved UID
> Remove CAP_SETUID from maximum privilege set
» Can switch to file owner using setresuid() with no privilege

* Change owner of files to a unique unused UID

> Unprivileged process can now open only needed files
> Other system files inaccessible

21

Refactored Security Analysis Results

Unsafe State

Program
Read /dev/mem Write /dev/mem Pr1;7)1iiged Kill Process

passwd 100% 100% 63%

Refactored
passwd

su 88% 88% 0% 88%

Refactored
su

22

Principle: Fault Compartmentalization

+ Separate individual components into smallest functional entity possible.

* These units contain faults to individual components.
e Allows abstraction and permission checks at boundaries.
* In practice, smallest functional entity can be too expensive.

¢9.| A chatting app’s image processing module and audio processing module
— |l are compartmentalized so that bugs in one module will not affect another.

23

Isolation vs. Compartmentalization

e |[solation Is a fundamental mechanism.

> Emphasizes barriers/walls between components; often no intended interactions
> E.9., between processes, VMs, untrusted libs
« Compartmentalization is a design strategy/policy that often uses isolation.

Compartmentalization builds on least privilege and isolation. Both properties

are most effective in combination: many small components that are isolated
and running and interacting with least privileges.

24

Policy Definition Method (PDM)

PDMs identify subjects, objects, and permissions to enforce.

 Automation

* Policy languages

e Separation granularities
* Analysis technigques

* Subject selections

* Generality

25

Compartmentalization Abstractions

Key factors to consider

* A model of actions

* Trust models

e Target properties to enforce
 Composing with other abstractions

20

Enforcing Compartmentalization

e Software-based
> E.Q., SFI, AutoPriv
» Hardware-based
> E.9., page-based, MPK
* Hybrid
 Other considerations

> Granularity: byte-level to entire physical memory
> Supported number of domains
> Performance

27

Evaluating Compartmentalization

* Security benefits

* Performance compared to a monolithic design
 Compatibility with existing software and programming idioms
* Usability of separated software

28

AG6: Group Project: Paper Presentation and Discussion

* Four groups; each group picks one paper from a provided list.
> Other papers are allowed, as long as it is approved by the instructor.
* Deadline 1: Pick a paper by 11/19, Wednesday.

* Presentation (10 points)

» Students and the instructor will ask questions during the presentation.
> Everyone should contribute equally.
> Everyone in the same group receives the same score for slides and presentation.
> Teamwork evaluation is worth 2 points.
* Deadline 2: 12/1 before class.

* One presentation on 12/1 and three on 12/8.

29

Sanitizers

30

Memory Sanitizers

he.? 4

mployees must
wash hands before
returning to libc

31

Spatial Memory Safety Bugs: Buffer Overflows

ﬁ Reading/writing a buffer out of its bounds.

int array[5]

EELELTE
v

32

Temporal Memory Safety Bugs

Dereference of ptris a
use-after-free (UAF) bug.

Freeing the ptr again is a
double free bug.

Ox10fT

0x1000

33

Memory Safety Error: Accessing a
semantically illegitimate memory address

34

Mitigations for Memory Safety Errors

* Address Space Layout Randomization

> Probabillistic safety; shown to be not very effective
» Control-flow Integrity (CFl)

> Forward CFl for indirect function calls and jumps
» Backward CFI for return addresses

> Often allows bugs to happen and hide for a while; and missing bugs
* Memory Isolation

» Permit errors inside fault domains.
* Testing & Fuzzing

> Challenging to have good coverage.
* None of the approaches ensures detecting memory safety bugs!

35

Stronger memory safety:
Catch errors when they occur.

36

Sanitizer Goal: Crash Early and Quickly!

e Sanitizers instrument programs to check for violations, crash immediately.
* Fuzzers trigger bugs and record crashes, but not every bug crashes.

e Sanitizers enforce a security policy to crash the program upon violation.

» Sanitizers make bugs detectable (at least more likely).

Sanitizers enforce a policy, detect bugs early, and
iIncrease testing effectiveness.

37

Address Sanitizer (ASan)

* Monitoring (sanitizing) every memory access to detect memory safety violations.
* Originally developed, and still maintained, by Google
e Available in LLVM and GCC

* Have found thousands of memory safety bugs.

33

ASan Algorithm

* Map regular memory to shadow memory.

> Each byte is mapped.
> Regular memory includes valid memory objects and redzones.

« Shadow memory indicates the validity of mapped regular memory.

* Before each memory access, check the target memory’s validity by
querying its mapped shadow memory’s status.

39

Optimization: Guard Zone/Page

} csve Place a guard zone before/after a data region.
DB WS Guard zones are unmapped or not readable/writable.

> Access to guard zones are trapped by hardware.

| Assume Guard Zone’s size is GSize, a memory read/
Pata Region write is safe if the address is in [DB-GSize, DL+GSize].

e Also called red zone

DL

>

40

ASan Algorithm

* Map regular memory to shadow memory.

> Each byte is mapped.
> Regular memory includes valid memory objects and redzones.

« Shadow memory indicates the validity of mapped regular memory.

* Before each memory access, check the target memory’s validity by
querying its mapped shadow memory’s status.

41

Shadow Memory

Memory

e \
Shadow

Shadow
“Bad % Bad
Shadow Shadow

Memory /

Memory

Figure 1: AddressSanitizer memory mapping.

42

Shadow Memory Mapping

 Newly allocated memory heap objects are typically aligned at a
8-byte boundary.

* Any aligned 8-byte of memory is in one of 9 states:
> The first k (0 <= k <= 8) bytes are addressable.

> The remaining (8 - k) bytes are not.
* These 9 states can be encoded into one byte.

|| Addressable
B Unaddressable
Shadow

! = N W | s~ 0| N | O

[y

Google

43

Shadow Memory

* Newly allocated memory heap objects are typically aligned at a
8-byte boundary.

* Any aligned 8-byte of memory is in one of 9 states:
> The first k (0 <= k <= 8) bytes are addressable.

> The remaining (8 - k) bytes are not.
* These 9 states can be encoded into one byte.

 ASan reserves 1/8 of virtual address space to its shadow memory.

e Given a virtual address Addr, its shadow memory is computed
by (Addr >> 3) + Offset

> 0f fset is system/implementation-specific.

- ASLR must be taken into account when choosing O0ffset.
« Shadow memory is mapped to inaccessible memory.

44

Shadow Memory

Memory

e \
Shadow

Shadow
“Bad % Bad
Shadow Shadow

Memory /

Memory

Figure 1: AddressSanitizer memory mapping.

45

An Example of Shadow Memory for x86-32 Linux

Oxffffffff
0x40000000

Ox3fffffff
0x28000000

Ox23ffffff
0x20000000

Ox1fffffff
0x00000000

Oxffffffff
0x40000000

Ox3fffffff
0x28000000

Ox23ffffff
0x20000000

Application
Shadow

/

Ox1fffffff
0x00000000

B mprotect-ed

46

ASan Algorithm

* Map regular memory to shadow memory.
> Each byte is mapped.

> Regular memory includes valid memory objects and
« Shadow memory records the validity of mapped regular memory.

* Before each memory access, check its validity by querying its
mapped shadow memory status.

47

Optimization: Guard Zone/Page

} csve Place a guard zone before/after a data region.
DB WS Guard zones are unmapped or not readable/writable.

> Access to guard zones are trapped by hardware.

| Assume Guard Zone’s size is GSize, a memory read/
Pata Region write is safe if the address is in [DB-GSize, DL+GSize].

e Also called red zone

DL

>

48

Redzones Between Valid Memory Objects

* Page-level redzones are too coarse-grained for memory objects.
 ASan uses small redzones between each valid memory object.
> Minimum: 32 bytes; default: 128 bytes

> Larger redzones enable higher probability of detecting buffer overflows.

Object1 - Object2 - Object2 -

Mapped to shadow memory indicating
they are not addressable.

49

Instrumentation: 8-byte Access

* Accessing an 8-byte value from address p

unsigned long val = *p;

|| Addressable
B Unaddressable
Shadow

= N WA, 0| | N | O

ShadowAddr = (p >> 3) + Offset;

if (*ShadowAddr '= 0) {
ReportAndCrash(Addr) ;

I3

1
[y

Google

unsigned long val = *p;

50

Instrumentation: N-byte Access (N =1, 2, 4)

* Accessing an k-byte value from address p

w KD

|| Addressable
B Unaddressable
Shadow

= N W HSd U] | N|O

1
[y

Google

ShadowAddr = (p >> 3) + Offset;

kK = %ShadowAddr;

if (k '=0 && ((p & 7) + AccessSize > k)
ReportAndCrash(p);

Iy

"
~

51

Detect Use-After-Free Bugs

e After free() is called, ASan “poisons” the object’s shadow memory.
> Set the corresponding shadow memory as unaddressable

* Delay the free

> Maintain a quarantine pool for those to-be-free memory objects.
- Really free them when the pool is full.

 May miss UAF bugs

char %xa = new char[l << 20]; // 1MB

delete [] a; // <<< "free"

char b = new char[l << 28]: // 256MB
delete [] b; // drains the quarantine queue.
char *xc = new charl[l << 20]; // 1MB

al@0] = 0; // "use". May land in ’'c’.

52

How to detect buffer overflows
on stack/global?

53

Detecting Buffer Overflows on Stack and Global

e Stack and global objects are not necessarily aligned at 8-bytes boundary.
 ASan needs to poison redzones around such objects.

* For globals, redzones are created at compile time and poisoned at startup.
* For stack objects, redzones are created and poisoned at run-time.

54

Example of Instrumenting Stack

void foo() {
char rz1[32];
char arr[10];
char rz2[32-10+32];
unsigned *shadow =
void foo() { (unsignedx) (((unsignedx)rz1>>3)+0ffset);
char arr[10]; // poison the redzones around arr.

// <function body> — shadow[0] = Oxffffffff; // rzl
+ shadow([1] = Oxffff0200; // arr and rz2
shadow([2] = oOxffffffff; // rz2

// <funct10n body>
// un—poison all
shadow[0] = shadow[1l] = shadow[2] =

Does it guarantee to detect buffer overflows?

What if a memory over-read/write strides over redzones?

55

Size of Redzone

* Larger redzones enables higher probabillity of detecting buffer overflows.

* However, higher performance overhead
> More memory consumption

> Slower execution time
- Larger redzones mean more memory writes to their shadow memory.

56

Misaligned Issue
* Assume memory accesses are aligned. However,

int xa = new int[2]; // 8-aligned
int *ku = (intx)((chark)a + 6);
xu = 1; // Access to range [6-9]

ShadowAddr = (p >> 3) + Offset;

k = xShadowAddr:

if ws ((p & 7) + AccessSize > k)) {
RepertAndCrash(p);

}

K is 0 because 8 bytes of memory starting from
((p >> 3) << 3) are addressable.

57

Conflict with Load Widening

* Load widening: A compiler optimization technique that combine
multiple smaller memory loads into one bigger (wider) load.

struct X { char a, b, c; }:
void foo() {
X X} oue
. = X.a + X.C:

* X.a + X.C may be compiled into one 4-byte load, causing ASan to
report an “error” (false positive).

* Solution: Disable this compiler optimization.

58

High Performance Cost (Reported by The 2012 Paper)

* /3% slowdown on average for SPEC CPU2006
e 3.37X memory consumption
e 2.5X code size bloating

59

Effective Bug-detection

e Chromium (including WebKit); in first 10 months
o heap-use-after-free: 201
o heap-buffer-overflow: 73
o global-buffer-overflow: 8
o stack-buffer-overflow: 7
Mozilla

FreeType

FFmepeg

libjpeg-turbo

Perl

Vim

LLVM

GCC

WebRTC

Google

60

How to implement ASan?

Compiler, Of Course!

61

Considerations for Engineering Sanitizers

* \What types of memory bugs to detect?

* \What kinds of operations to instrument?

* What metadata to maintain?

* \What data structures to use to manage metadata®
* What is the performance overhead budget?

* \What optimizations can we do?

* How is the compatibility with un-sanitized code?

62

Summary of ASan

* Using shadow memory to sanitize every memory access

* Detecting both spatial and temporal memory safety

* Implementation: Compiler instrumentations + run-time library support
* High performance and memory overhead

* Incomplete bug detection abillity

03

Can we do better than ASan for security?

Of Course!

64

Memory Safety

* Memory buffers are allocated and deallocated during program execution.

* Each buffer occupies a contiguous range of memory addresses and also
has a lifetime.

> Bounds: The lower and upper addresses of the buffer

> Lifetime: When the buffer is valid for use.

- E.g., a buffer allocated by a function’s stack has a lifetime when the
function executes; should not be used after the function returns.

- E.g., a buffer that was created by ma L Loc should not be accessed after
being freed.

65

Memory Safety: Expected vs. Abnormal Behaviors

* Expected behavior: A buffer should be accessed within its bounds
and only during its lifetime.

» Spatial memory safety: A buffer should be accessed within its bounds.
> Temporal memory safety: A buffer can be accessed only during its lifetime.
* Abnormal behavior:
> When spatial memory safety is violated, we have buffer overread/overwrite.
> When temporal memory safety is violated, we have use-after-free & invalid free.

60

Why are there so many memory safety
bugs and vulnerabilities?

6/

Programming Correctly in C/C++ is (Extremely) Hard

e Pointers

* Pointer: Capability to manipulate memory.
* For C, pointer is usually implemented as a virtual address.

A C pointers can do almost arbitrary memory manipulation!

* The correctness is at the discretion of programmers.

63

ASan is one type of object-based
memory safety.

69

Pointer-based Memory Safety

* For each pointer, maintain information, called metadata, about
the pointed memory object

* Use the metadata to do validity checking for pointer dereference

 |deally, we would like a mechanism that is

> Comprehensive, I.e., catching all memory safety errors

> Efficient, I.e., low execution time and memory overhead

> Automatic, I1.e., minimal effort from programmers

> Backward-compatible, i.e., running smoothly with unchanged legacy code

70

Core Question:
How to manage safety metadata?

71

Managing Pointer’s Metadata

* What metadata is needed?

* How is a pointer mapped to / associated with its metadata?

* How to propagate metadata during pointer propagation (e.g., assignment)?
* How to update the metadata?

* How to perform memory safety checks using the metadata®

(2

Spatial Memory Safety Bugs: Buffer Overflows

ﬁ Reading/writing a buffer out of its bounds.

int array[5]

Essential information:
» Starting address (base/lower bound)

_ > Ending address (upper bound)
legal llegal Obiject size

parr

73

Metadata for Spatial Memory Safety

» Option 1: (base, upper_bound)

* Pointer dereference: Check if base <= p < upper_bound

 Option 2: (base, size)

* Pointer dereference: Check if base <= p < base + size

* More accurate check: base <= p && p + sizeof(referent) <= upper_bound

4

Temporal Memory Safety Bugs

Dereference of ptris a

m use-after-free (UAF) bug.

Security risks

/N Information leaking
/\ Data corruption
/\ Denial of service

Ox10fT

0x1000

75

Key-lock Checking for Temporal Memory Safety

e.g. lock = 0;
0: 20"
Ox10ff

142
’ check_if key matches_lock(ptr);
ptr ptr—>num = 30;

0x1000

=P Assign memory object a lock and pointer a key
=P |nitialize key and lock to the same value
=P |nvalidate lock upon memory deallocation

=P Dynamically check if key matches lock

Charles Fischer and Richard LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.
1980 |IEEE Transactions on Software Engineering

/6

Metadata for Pointers

e Spatial memory safety: base, upper_bound/size
* Temporal memory safety: key, lock

o

upper_bound

Dt

base

Where to put these metadata?

I

Managing Pointer’s Metadata

* How is a pointer mapped to / associated with its metadata?

/83

Disjoint Metadata Management:
SoftBoundCETS

79

SoftBoundCETS’ Metadata Management

* Record metadata in a disjoint memory region

* E.g., p and g points to different sub-fields in the same memory object,
so they maintain different base-upper bounds but the same key-lock.

& p:0x50
0x50

0x54

0x
{ Spatial —| |- Temporal
oxa0 ~{ q:0x70 0x70 | 0x74 | 5 | 0xB0

base bound key lock

—
lock

locations 0xBO
1

| |
"metadata in a disjoint space '

SoftBoundCETS’ Metadata Management

* Record metadata in a disjoint memory region
* Implementation options: hash table, shadow memory

* More efficient option: A two-level lookup trie to locate the metadata
> Use a pointer’s address as the initial lookup index

Primary trie Secondary trie

‘ Trie root ptr | ; B> ; B>
>I | _>I
| |
| ;;} | H—D (key, lock addr), base, upper_bound

Memory

Pointer —>-— ptr

Nl

L |- 22 bits —|l|— 23 bits - J

Figure 3. Organization of the trie for pointer metadata

==A

31

SoftBoundCETS: Creating Pointers

 Metadata are created when their pointers are created.
> E.g., “p = malloc(size);” becomes

p = malloc(size);

p_key = next_key++;
p_lock = allocate_lock();

*(p_lock) = p_key;
p_ base = p;
p_bound =p !=0 ? p+size: 0;

> E.g., “free(p);” becomes

free(p);
*(p_lock) = INVALID:

deallocate_lock(p_lock);

82

SoftBoundCETS: Pointer Arithmetic

* \When an expression contains pointer arithmetic (e.g. ptr+index), array
indexing (e.g. &(ptr[index])), or pointer assignment (e.g., newptr =
the resulting pointer inherits the metadata of the original pointer.

»E.g.,“q = p + 1ndeXx;” becomes

q = p + index;
// or &p[index]
g_base = p_base;
g_bound = p_bound;

q_key = p_key;
q lock = p lock:

ptr;),

83

SoftBoundCETS: Pointer Dereference

* Retrieve metadata and perform memory safety checks

(c) Temporal Check

tcheck(p_key, p_lock) {
if (p_key != *(p_lock))

raise exception();

}

(d) Spatial Check

scheck(p, p_base, p_bound, size) {
if (p <p_base I
P + Size >= p_bound)
raise exception();

}

34

SoftBoundCETS: Pointer Load & Store

(b) Pointer Load
int **p, *q;

scheck(p, p_base, p_bound);

tcheck(p_key, p_lock);

q = *p;
d_base = lookup(p)->base;
d_bound = lookup(p)->bound;

d_key = lookup(p)->key;
g_lock = lookup(p)->lock;

(c) Pointer Store

int **p, *q;

scheck(p, p_base, p_bound);
tcheck(p_key, p_lock);

lookup(p)->base = gq_base;
lookup(p)->bound = q_bound;
lookup(p)->key = q_key;
lookup(p)->lock = g_lock;

85

Comprehensive Memory Safety

* Metadata is manipulated/accessed only through the additional
Instrumentation added.

* Metadata is not corrupted and accurately depicts the region of
memory that a pointer can legally access.

* All memory accesses are conceptually checked before a dereference.

86

SoftBoundCETS

* Achieves full memory safety with good backward-compatibility

* However, very high performance overhead.

> ~75% on SPEC CPU2006, reported in 2015, based on LLVM-3.4.
»140% on 8 C SPEC CPU2017 benchmarks, reported in 2024, based on LLVM-12

E 750 mm softboundcets mm softboundcets-store

5 200

2 150 -

= 100 -

10 §

5 T 0 B i B B N i

a¥ %%Q < &es‘b :\56 ‘2;'(&‘3 &&Q Q‘b@eﬂ 1}(2') &c& & (&\ e \&’z“\q/b&‘e& \«0(0% 0‘0611: 6@%6
<

Figure 6 Runtime execution time overheads of the Soft BoundCETS compiler prototype with
comprehensive memory safety checking (left bar of each stack) and while checking only stores (right
bar of each stack) on a Intel Haswell machine. Smaller bars are better as they represent lower
runtime overheads.

Why is this approach slow? -

SoftBoundCETS’ Metadata Management

* Use a two-level lookup trie to locate the metadata
> Use a pointer’s address as the initial lookup index

Primary trie Secondary trie

‘ Trie root ptr i ! B> ! ; B>
—> > | I
|

L H—D (key, lock addr) base, upper_bound
|
|

Memory
Pointer

I_I ‘ —> > ptr

L |- 22 bits 4 |- 23 bits - J

Figure 3. Organization of the trie for pointer metadata

* Loading metadata:14 x86-64 instructions
» Storing metadata: 16 x86-64 instructions

883

Disjoint Metadata Management is Slow

Address Space

)

o

89

Fat Pointers

* Pointer representation carries metadata besides the raw pointer (address).

raw ptr

Fat pointer:
metadata

* One implementation

struct _safe_ptr {
voild *raw_ptr;
vold xbase addr;
vold xupper_bound;
uintod_t key;
vold *lock _addr;

90

Example of Using Fat Pointers

Address Space

0x1008 ™
@X]'@l@ \ int o [4] ;
pl

J

0x1018

91

Example of Using Fat Pointers

Address Space

~

0x1010 0x1008
base: 0x1008

int arr[4];

upper: 0x1018 \
key: 42

lock addr: 0x1000

J

0x1018

92

How do fat pointers interact
with legacy library code?

Legacy libraries are unaware
of the new fat pointers.

93

Type Compatibility with Unchanged Code

* One implementation

struct safe_ptr {
char xraw_ptr;
char xbase addr;
char supper_bound;
uintod_t key;
vold xlock _addr;

char xstrchr(const char xs, int c):

How to pass a safe_ptrto strchr()?

strchr () returns a raw pointers.
How to make it a safe_ptr?

94

Memory Layout Compatibility with Unchanged Code

Address Space
char xlib_foo(char xxp, size t n, ..); P

e

95

Memory Layout Compatibility with Unchanged Code

Address Space

char xlib_foo(char *xp, size t n, ..);

seein

safe_ptr p

ptr

ptr2

96

Memory Layout Compatibility with Unchanged Code

| | Address Space
char *xlib_foo(char sxp, size t n, ..);

ptr

v metadataT
ptr2
safe _ptr p metadata?

ptrn

metadatan

Lib_foo would misinterpret metadata as pointers!

97

Solutions to Backward Compatibility Issues

* Porting library functions using fat pointers

> Pros: complete and secure

> Cons: high programmer effort; not always viable
* Mixing using raw pointers and fat pointers

> Pros: easy to implement

> Cons: security hazards
* Hybrid of disjoint and in-place metadata

> Pros: secure
> Cons: complex and slow

98

Data Marshaling

raw
ptri

meta-
data1l

raw
ptr2

meta-
data2

raw
ptrn

meta-
datan

99

Data marshaling

Data Marshaling

raw
ptri

raw
ptr2

raw
ptrn

meta-
data1l

meta-
data2

meta-
datan

100

Two Important Questions on Data Marshaling

Data marshaling

raw
ptri

raw
ptr2

raw
ptrn

:@: Q1. How much programmer effort is required?

3@5 Q2. What is the performance penalty?

==

meta-
dataf

meta-
data2

meta-
datan

101

SoftBoundCETS’ Metadata Management

* Use a two-level lookup trie to locate the metadata
> Use a pointer’s address as the initial lookup index

Primary trie

Secondary trie

‘ Trie root ptr i ; B> !

L |- 22 bits 4 |- 23 bits -

Pointer |

J

L H—D (key, lock addr) base, upper_bound

Memory

Figure 3. Organization of the trie for pointer metadata

102

Is the disjoint metadata scheme completely
free of backward-compatibility issues?

103

Compatibility Issues with Disjoint Metadata Scheme

vold gsort(void *xbase, size t n, size t width, int (xcompar)(const void %, const void *));

e gsort: Sort an array of n item, each of size width, using function compar.
> E.g., Use a greater_than() function to sort an array of n integers.

104

Label-based CFI

* Assign and insert a label (ID) before each indirect transfer destination

* Before executing an indirect transfer, check the destination’s label
> Similar to using stack canaries / shadow stacks

bool 1lt(int x, int y) {
return x < y,;

}
bool gt(int x, int y) {
return x > y,;

}

sort2(int a[], int b[], int len)
{

sort(a, len, 1t);

sort(b, len, gt);
t

------------- » Direct forward transfer

S

Indirect forward transfer
Backward transfer

call sort™

| call 17,RT

label 55 W, .

§

S

call sortf

_ ret 55

label 23 ¥’

o

lt():

Ly label 17

_— 3

- ret 23

gt():

label 55 %

§

ret ..

label 17

LS

\ret 23

105

Compatibility Issues with Disjoint Metadata Scheme

vold gsort(void *xbase, size t n, size t width, int (xcompar)(const void %, const void *));

e gsort: Sort an array of n item, each of size width, using function compar.
> E.g., Use a greater_than() function to sort an array of n integers.

* \What about sorting an array of pointers??

> SoftBoundCETS’ metadata lookup procedure will not work!
- It uses a pointer’s address to index the metadata.
> SoftBound’s solution: Rewrite gsort () considering the associated metadata

106

Strengths and Weaknesses of Fat Pointers

* Good performance
> Run-time can (very) quickly finds metadata to use.

 Difficult to interoperate with libraries that do not use fat pointers
> Need wrappers to convert fat pointers to raw pointers and vice versa
> Need to change memory layout of data structures

107

