
CSCI 4907/6545 Software Security

Instructor: Jie Zhou
Department of Computer Science

George Washington University

Fall 2025

Slides materials are partially credited to Erik Poll of Radboud University.

Outline

2

• Review: Address Sanitizer & Pointer-based Memory Safety
• Type Safety
• Memory-safe Programming Languages

Stronger memory safety:
Catch errors when they occur.

3

ASan Algorithm

5

• Map regular memory to shadow memory
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory indicates the validity of mapped regular memory.
• Before each memory access, check the target memory’s validity by

querying its mapped shadow memory’s status.

Shadow Memory

6

Shadow Memory Mapping

7

• Newly allocated memory heap objects are typically aligned at a
8-byte boundary.

• Any aligned 8-byte of memory is in one of 9 states:
‣ The first k (0 <= k <= 8) bytes are addressable.

‣ The remaining (8 - k) bytes are not.

• These 9 states can be encoded into one byte.

Redzones Between Valid Memory Objects

8

• Page-level redzones are too coarse-grained for memory objects.

• ASan uses small redzones between each valid memory object.
‣ Minimum: 32 bytes; default: 128 bytes

Object1 RZ2RZ1 Object2 RZ3 Object2 RZ4

Mapped to shadow memory indicating
they are not addressable.

‣ Larger redzones enable higher probability of detecting buffer overflows.

Size of Redzone

9

• Larger redzones enables higher probability of detecting buffer overflows.
• However, higher performance overhead
‣ More memory consumption

‣ Slower execution time

- Larger redzones mean more memory writes to their shadow memory.

Considerations for Engineering Sanitizers

10

• What types of memory bugs to detect?

• What kinds of operations to instrument?

• What metadata to maintain?

• What data structures to use to manage metadata?

• What is the performance overhead budget?

• What optimizations can we do?

• How is the compatibility with un-sanitized code?

Summary of ASan

11

• Using shadow memory to sanitize every memory access

• Detecting both spatial and temporal memory safety

• Implementation: Compiler instrumentations + run-time library support

• High performance and memory overhead

• Incomplete bug detection ability

Pointer-based Memory Safety

12

• For each pointer, maintain information, called metadata, about
the pointed memory object

• Use the metadata to do validity checking for pointer dereference
• Ideally, we would like a mechanism that is
‣ Comprehensive, i.e., catching all memory safety errors

‣ Efficient, i.e., low execution time and memory overhead

‣ Automatic, i.e., minimal effort from programmers

‣ Backward-compatible, i.e., running smoothly with unchanged legacy code

Core Question:
How to manage safety metadata?

13

Managing Pointer’s Metadata

14

• What metadata is needed?

• How is a pointer mapped to / associated with its metadata?

• How to propagate metadata during pointer propagation (e.g., assignment)?

• How to update the metadata?

• How to perform memory safety checks using the metadata?

Spatial Memory Safety Bugs: Buffer Overflows

15

Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

legal illegal

Essential information:
‣ Starting address (base/lower bound)

‣ Ending address (upper bound)

‣ Object size

:42

Key-lock Checking for Temporal Memory Safety

ptr->num = 30;
check_if_key_matches_lock(ptr);

Charles Fischer and Richard LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.

1980 IEEE Transactions on Software Engineering

ptr memory
object

16

Assign memory object a lock and pointer a key
Initialize key and lock to the same value
Invalidate lock upon memory deallocation
Dynamically check if key matches lock

0x1000

0x10ff:42
X e.g. lock = 0;

SoftBoundCETS’ Metadata Management

17

• Record metadata in a disjoint memory region
• E.g., p and q points to different sub-fields in the same memory object,

so they maintain different base-upper bounds but the same key-lock.

SoftBoundCETS

18

• Achieves full memory safety with good backward-compatibility
• However, very high performance overhead.

Why is this approach slow?

‣ ~75% on SPEC CPU2006, reported in 2015, based on LLVM-3.4.

‣ 140% on 8 C SPEC CPU2017 benchmarks, reported in 2024, based on LLVM-12

SoftBoundCETS’ Metadata Management

19

,base, upper_bound

• Use a two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

• Loading metadata:14 x86-64 instructions

• Storing metadata: 16 x86-64 instructions

Fat Pointers

20

• Pointer representation carries metadata besides the raw pointer (address).

raw ptrFat pointer:
metadata

struct _safe_ptr {
 void *raw_ptr;
 void *base_addr;
 void *upper_bound;
 uint64_t key;
 void *lock_addr;
};

• One implementation

Legacy libraries are unaware
of the new fat pointers.

How do fat pointers interact
with legacy library code?

21

Type Compatibility with Unchanged Code

22

struct safe_ptr {
 char *raw_ptr;
 char *base_addr;
 char *upper_bound;
 uint64_t key;
 void *lock_addr;
};

• One implementation

char *strchr(const char *s, int c);

How to pass a safe_ptr to strchr()?
strchr() returns a raw pointers.
How to make it a safe_ptr?

Memory Layout Compatibility with Unchanged Code

ptr1
metadata1

ptr2
metadata2

ptrn
……

metadatan

lib_foo would misinterpret metadata as pointers!

23

char *lib_foo(char **p, size_t n, …);
Address Space

safe_ptr p

Solutions to Backward Compatibility Issues

24

• Porting library functions using fat pointers
‣ Pros: complete and secure

‣ Cons: high programmer effort; not always viable

• Mixing using raw pointers and fat pointers
‣ Pros: easy to implement

‣ Cons: security hazards
• Hybrid of disjoint and in-place metadata
‣ Pros: secure

‣ Cons: complex and slow
• Data marshaling
‣ How much program effort is required?

‣ What is the performance overhead?

Compatibility Issues with Disjoint Metadata Scheme

25

void qsort(void *base, size_t n, size_t width, int (*compar)(const void *, const void *));

• What about sorting an array of pointers?

‣ SoftBound’s solution: Rewrite qsort() considering the associated metadata

• qsort: Sort an array of n item, each of size width, using function compar.
‣ E.g., Use a greater_than() function to sort an array of n integers.

‣ SoftBoundCETS’ metadata lookup procedure will not work!
- It uses a pointer’s address to index the metadata.

Strengths and Weaknesses of Fat Pointers

26

• Good performance

• Difficult to interoperate with libraries that do not use fat pointers
‣ Run-time can (very) quickly finds metadata to use.

‣ Need wrappers to convert fat pointers to raw pointers and vice versa
‣ Need to change memory layout of data structures

“Well-typed programs cannot go wrong.”

27

Robin Milner

What is type in the context of
programming languages?

28

Architecture of Modern Computers

29

Input Output

Computing

Memory

What is type in the context of
programming languages?

30

Type and Type System

31

In computer programming, a type system is a logical system comprising a set
of rules that assigns a property called a type (for example, integer, floating
point, string) to every term (a word, phrase, or other set of symbols). A type
system dictates the operations that can be performed on a term.
Usually the terms are various language constructs of a computer program, such
as variables, expressions, functions, or modules.
For variables, the type system determines the allowed values of that term.

Wikipedia

A data type (or simply type) is a collection or grouping of data values, usually
specified by a set of possible values, a set of allowed operations on these
values, and/or a representation of these values as machine types.

“A language is type-safe if the only
operations that can be performed on data
in the language are those sanctioned by

the type of the data.”

32

Vijay Saraswat

Type Safety

33

• A sound and safe type system must carefully specify what
operations can be performed on the data controlled by the
data handler/operator/controller, and what operations are
allowed on the handler/operator/controller itself.

upper_bound

base

memory
object

lifetime
other properties

operate/control

• A type-safe language has a sound and safe type system
that can be respected.

Can memory safety be considered
one aspect of type safety?

34

Spatial Memory Safety Bugs: Buffer Overflows

35

Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

legal illegal

Essential information:
‣ Starting address (base/lower bound)

‣ Ending address (upper bound)

‣ Object size

Every programming language
has its type system.

36

Type and Type System

37

• Statically-typed vs. dynamically-typed type system / languages
‣ Statically-typed: Data types are known at compile time

- E.g., C/C++, Java, Rust
‣ Dynamically-typed: Data types are known at run-time

- E.g., Python, Javascript
• Strongly-typed vs. weakly-typed type system / languages
‣ Strongly-typed: Enforcing strict type rules that cannot be broken.

‣ Weakly-typed: Allowing easily breaking the type rules
- E.g., Java, Rust, Python

- E.g., C/C++, Javascript

Type System Can Go CRAZY!

38

Javascript’s Array

39

“ArrayIndexOutOfBoundsException”

This slide is credited to Prof. James Mickens @Harvard

var arr = [];
alert(arr.length); “0”
alert(arr[3]);

Javascript’s Array

40

var arr = [];
alert(arr.length); “0”
alert(arr[3]); “undefined”
arr[3] = “hi”;
alert(arr.length); “4”

alert(arr[“3”]); “hi”
delete arr[3];

This slide is credited to Prof. James Mickens @Harvard

alert(arr.length); “4”
alert(arr[3]); “undefined”

Nothing happened.

alert(arr[3]); “hi”

Type Casting

41

• Converting one type to another.

• May cause type confusion when used incautiously.
‣ Leading to vulnerabilities, e.g., calling a function chosen by attackers.

Vulnerabilities Caused By UAF

42

 1 struct N { long usr; long pwd; int (*fn)(void); };
 2 struct O { int (*oper)(void); long u1; long u2; };
 3
 4 void foo(long uid, long secret) {
 5 struct N *p = malloc(sizeof(struct N));
 6 p->fn = __safe_function_1;
 7 p->usr = uid;
 8 p->pwd = secret;
 9 p->fn();
 10 }
 11
 12 void bar(long user1, long user2) {
 13 struct O *x = malloc(sizeof(struct O));
 14 x->oper = __safe_function_2;
 15 structO *q = x;
 16 free(x);
 17 q->oper();
 18 q->u1 = user1;
 19 q->u2 = user2;
 20 reply("Users: %l | %l", q->u1, q->u2);
 21 free(q);
 22 }

• Write through p and read through q
leads to arbitrary code execution.
‣ exploit path: 16->5->7->17

Type Casting in C

43

• Implicit/automatic casting
‣ Compiler automatically/silently converts a variable from one type to another.

‣ Occurs during assignments, argument passing, and mixed-type expressions

‣ E.g., Adding up two integers with different sizes

Vulnerability: Truncation Errors

44

int func(char *name, unsigned int cbBuf) {
 unsigned short bufSize = cbBuf;
 char *buf = (char *)malloc(bufSize);
 if (buf) {
 memcpy(buf, name, cbBuf);
 …
 free(buf);
 return 0;
 }
 return 1;
}

What if we call the function with cbBuf greater than 2^16 -1?

Type Casting in C

45

• Implicit/automatic casting

• Explicit casting

‣ Compiler automatically/silently converts a variable from one type to another.

‣ Occurs during assignments, argument passing, and mixed-type expressions

‣ E.g., Adding up two integers with different sizes

‣ Use a cast operator “(type)” to convert a variable to anther type

‣ E.g., int i = 5; float f = (float)i;

Type Casting in C++

46

• C++ is an object-oriented programming language.
‣ Supporting hierarchical types

• Two common types of casts: upcast and downcast.
‣ Upcast is safe, but downcast may not be.

Type Casting in C++

47

• Four explicit type-cast operators

static_cast<target_type>(expression)

48

• Explicitly converting one type to another

• Static type checking at compile time; no runtime type checking
‣ Only allows casts between compatible types along the type hierarchy

- E.g., cast between a floating-point variable to an integer

- E.g., cast between pointers to an object and its ancestor object type

• Similar to implicit type cast (conversion)

• Weak safety guarantees, e.g., allowing downcast.

const_cast<target_type>(expression)

49

• Removes the constness of a reference/pointer

void changeValue(const int* ptr) {
 int* modifiablePtr = const_cast<int*>(ptr);
 *modifiablePtr = 10; // Undefined behavior if

 // ptr points to a const object
}

• No type confusion issues.

• Incurs undefined behavior if using it to modify a truly constant object
- Commonly used to remove const from an object that was originally mutable

reinterpret_cast<target_type>(expression)

50

• Conversion between any two types

• Reinterpret the underlying bits of an object as the target type.

• Commonly used to cast between pointers to incompatible types.

• Very unsafe!

struct A {
 int x;
 double y;
};

struct B {
 char c;
 int i;
};

int main() {
 A a{42, 3.14};
 B* b = reinterpret_cast<B*>(&a);

 // Accessing members of B via b is unsafe and can cause undefined behavior.
 std::cout << "B's i (as int): " << b->i << std::endl;
 std::cout << "B's c (as char): " << b->c << std::endl;
 return 0;
}

What are printed out?

dynamic_cast<target_type>(expression)

51

• Intended for safe casting within an inheritance hierarchy.

• Commonly used for downcast.

• Runtime check to ensure the cast is safe.
‣ Use C++’s RTTI to determine the concrete type at runtime

C++’s Run-time Type Information (RTTI)

52

• A mechanism exposing a memory object’s type at run-time

• In C++, only works for classes with virtual functions
• Given a pointer to an object, RTTI uses it to query the object’s vtable, and

then find the RTTI entry for the object’s type, and recursively query RTTI
entries to find a compatible type for the casting target type.

dynamic_cast<target_type>(expression)

53

• Intended for safe casting within an inheritance hierarchy.

• Commonly used for downcast.

• Runtime check to ensure the cast is safe.
‣ Use C++’s RTTI to determine the concrete type of pointed object at run-time

‣ Follow the inheritance hierarchy to verify if this is a upcast

• For failed check, return null or a pre-defined exception
• Provide safety, but at high performance and code size cost

• Only support polymorphic objects with virtual functions

Type confusion is a major source
of vulnerabilities in C/C++ programs.

54

HexType: A Faster and More Comprehensive Solution

55

• A compiler-based tool detecting type casting errors at run-time
• Maintaining a type table recording all class inheritance information
• Maintaining an object-type mapping table
• Dynamically checking if a type casting operating (e.g., static_cast) is safe.

HexType: Type Hierarchy Mapping

56

• Extract all type relationship information about classes

• Hash each type name to a string hash

• Generate a list of hash values as a global variable for each type

• E.g., DOMElementImpl: H(DOMElement), H(DOMNode), ...

HexType: Type Table for Fast Lookup and Verification

57

• A Hybrid data structure mapping a object’s address to its type
‣ Hash table + red-black tree

- Fast lookup for frequently visited objects in the hash table

- Slow lookup for first-time visited objects

• Instrument unsafe type casts, mainly static_cast and reinterpret_cast
‣ Query the type table to find if the target type is compatible

Safe Programming Languages

58

Language-based Security

59

Enforcing security properties using programming language
features and techniques.

• Safety guarantees
‣ Memory safety, type-safety, thread-safety

• Forms of access control
‣ Visibility/access restrictions with e.g. public, private, const

‣ Sandboxing mechanisms inside programming language

- E.g., Python’s exec() with controlled environments
• Forms of information flow
• Examples: CFI, SFI, ASan, SoftBound, etc.
‣ Retrofitting memory safety into existing software

Other Ways Programming Languages Can Help

60

• Offering good APIs/libraries
‣ APIs with parameterized queries/prepared statements for SQL

‣ More secure string libraries for C

• Making assurances of the security easier
‣ Being able to understand code in a modular way

‣ Only having to review the public interface, in a code review
• Offering convenient languages features
‣ E.g., mechanism for exception handling

Safe Programming Languages:
Languages with Built-in Security Guarantees

61

Does writing in a safe language
ensure secure programs?

62

Of Course Not!

63

“Safe” Programming Languages

64

• You can write insecure programs in ANY programming language.
‣ Flaws in the program logic can never be ruled out.

• Still, some safety features can be nice.
‣ Preventing entire classes of bugs

‣ At least mitigate their impact

Safe Programming Languages

65

• Safe programming languages
‣ impose some discipline or restrictions on the programmer

• This takes away some freedom & flexibility from the programmer, but
hopefully extra safety and easier understanding makes it worth this.

- E.g., raw pointers are disallowed in Java.
‣ offer some abstractions to the programmer, with associated guarantees

- E.g., accessing an array in Java/Python will be enforced with bounds check.

Attempts at a General Definition of Safety

66

• A programming language can be considered safe if
‣ You can trust the abstractions provided by the programming language.

In other words, the language enforces these abstractions and
guarantees that they cannot be broken.
- E.g., a boolean is either true or false, and never 23 or null.

- Programmers do not need to care how “true/false” is represented in the machine.

• Programs have precise & well defined semantics (i.e., meaning)
‣ More generally, leaving things undefined in any specification is asking

for security trouble.

“A language is type-safe if the only
operations that can be performed on data
in the language are those sanctioned by

the type of the data.”

67

Vijay Saraswat

Attempts at a General Definition of Safety

68

• A programming language can be considered safe if
‣ You can trust the abstractions provided by the programming language.

In other words, the language enforces these abstractions and
guarantees that they cannot be broken.
- E.g., a boolean is either true or false, and never 23 or null.

• Programs have a precise & well defined semantics (i.e., meaning)
‣ More generally, leaving things undefined in any specification is asking

for security trouble.
• You can understand the behavior of programs in a modular way.

“Safer” and “Unsafer” Languages

69

Dimensions & Level of Safety

70

• There are many dimensions of safety: memory safety, type safety,
thread safety, arithmetic safety, guarantees about non-nullness,
about immutability, …

• For some dimensions, there can be many levels of safety.

Safety: How?

71

• Mechanism to provide safety include
‣ Compile-time checks, e.g., type checking

‣ Run-time checks, e.g., array bounds checks, null-ptr checks, etc.

‣ Automated memory management using a garbage collector

‣ Using an execution engine to do the things above

- E.g., Java Virtual Machine (JVM) which performs runtime checks
and periodically invokes the garbage collector, etc.

Compiled Binaries vs. Execution Engines

72

Case Study
Checked C: A Safe Extension to C

73

Checked C

74

• Originating from Microsoft Research

• A new extension to C, aiming for memory safety and type safety

• Open-sourced from its inception

Design Principles of Checked C

75

• High performance
‣ New checked pointer types and static checking

• Good human readability and long-term maintainability
‣ Explicit checked pointers and bounds information of memory objects

• Easy incremental porting legacy C code
‣ Mixing checked and legacy C code at fine granularity

‣ Good backward compatibility via bounds-safe interfaces

Checked Pointers

76

• _Ptr<T>: pointer to a singleton object of type T

• _Array_ptr<T>: pointer to an array of type T

• _Nt_array_ptr<T>: pointer to a null-terminated (ends with ‘\0’) array of type T

Checked Pointer: _Ptr<T>

77

• _Ptr<T>: pointer to a singleton object of type T
‣ No pointer arithmetic or subscripting allowed
struct Data {
 int val;
 long lval;
 ...
};

_Ptr<struct Data> p = malloc(sizeof(struct Data));
…
printf("val = %d\n", p->val);
…
p++;

null-pointer check inserted by compiler, if not
determined at compile time

error: arithmetic on _Ptr type
 p++;
 ~~^

Checked Pointer: _Array_ptr<T>

78

• _Array_Ptr<T>: pointer to an array of object of type T
‣ Permits pointer arithmetic and subscripting

‣ Bounds declared by programmers

‣ Bounds check inserted by compiler when not provable at compile time

_Array_ptr<int> p = malloc(sizeof(int) * BUF_LEN);
…
int i = p[5]; error: expression has unknown bounds

 int i = p[5];
 ^~~~

Bounds Declaration for _Array_ptr<T>

79

_Array_ptr<T> p : count(bounds_expr) = …;

#define BUF_LEN 30
_Array_ptr<int> p : count(BUF_LEN) = malloc(sizeof(int) * BUF_LEN);

int i = p[5];
no dynamic check inserted because compiler knows BUF_LEN > 5

int j = p[30];error: out-of-bounds memory access
 int j = p[30];

^~~~~
int k = p[var];

null-pointer and bounds check inserted by compiler, if var < BUF_LEN is not provable
_Array_ptr<int> p : count(BUF_LEN / 2) = malloc(sizeof(int) * BUF_LEN); allowed
int j = p[15] error: out-of-bounds memory access

 int j = p[15];
^~~~ Because p’s bounds is [p, p + 14)

_Array_ptr<int> p : count(BUF_LEN + 1) = malloc(sizeof(int) * BUF_LEN);
error: declared bounds for 'p' are invalid after initialization

Bounds Declaration for _Array_ptr<T>

80

_Array_ptr<T> p : count(lower_bound, upper_bound) = …;

#define BUF_LEN 30
_Array_ptr<int> p0 : count(BUF_LEN) = malloc(sizeof(int) * BUF_LEN);

_Array_ptr<int> p1 : bounds(p0, p0 + BUF_LEN / 2) = p0;

int i = p1[15]；
error: out-of-bounds memory access
 int i = p1[15];

^~~~~~

Design Principles of Checked C

81

• High performance
‣ New checked pointer types and static checking

• Good human readability and long-term maintainability
‣ Explicit checked pointers and bounds information of memory objects

• Easy incremental porting legacy C code
‣ Mixing checked and legacy C code at fine granularity

‣ Good backward compatibility via bounds-safe interfaces

Checked Region

82

• New keyword: _Checked
‣ Annotating a block of code, from a single statement to a whole source file

‣ Enforcing more strict typing rules, e.g., only checked pointers allowed

‣ Helping programmers to narrow down the scope of memory safety bugs:  

- Checked regions are provably blameless of causing spatial memory safety errors.
• _Unchecked regions: Force the compiler to omit checking

Backward Compatibility with Legacy C Code

83

char *strncpy(char *dst, const char *src, size_t len);

void foo() {
 _Array_ptr<char> s1 : count(10) = malloc(10);
 _Array_ptr<char> s2 : count(5) = malloc(5);
 ...
 dst = strncpy(s1, s2, 5);
 ...
}

error: passing '_Array_ptr<char>' to parameter of incompatible type 'const char *'
 strncpy(s1, s2, 5);
 ^~

• Checked pointers and raw pointers are incompatible by default.

Backward Compatibility with Legacy C Code

84

char *strncpy(_Array_ptr<char> dst : count(n),
 _Array_ptr<const char> src : count(n), size_t n);

void foo() {
 _Array_ptr<char> s1 : count(10) = malloc(10);
 _Array_ptr<char> s2 : count(5) = malloc(5);
 ...
 dst = strncpy(s1, s2, 5);
 ...
}

legal

void bar() {
 char *s1 = malloc(10);
 char *s2 = malloc(5);
 ...
 strncpy(s1, s2, 5);
 ...
}

What about calling strncpy() from unchecked C code?

Can we have an mechanism working for
both checked and unchecked code?

Bounds-safe Interface for strncpy()

85

1 char *strncpy(char *dst : itype(_Array_ptr<char>) byte_count(n),
2 const char *src : itype(_Array_ptr<const char>) byte_count(n),
3 size_t n) : itype(_Array_ptr<T>) byte_count(n);

itype (inter-operation type): A special type that can be either checked or unchecked type,

 depending on the context
1 dst is set to an itype with bounds of n bytes.
2 src is set to an itype with bounds of n bytes.
3 Return value is set to an itype with bounds of n bytes.

void bar() {
 char *s1 = malloc(10);
 char *s2 = malloc(5);
 ...
 strncpy(s1, s2, 5);

...
}

can compile and run, no bounds checks performed

Bounds-safe Interface for strncpy()

86

1 char *strncpy(char *dst : itype(_Array_ptr<char>) byte_count(n),
2 const char *src : itype(_Array_ptr<const char>) byte_count(n),
3 size_t n) : itype(_Array_ptr<T>) byte_count(n);

void foo() {
 _Array_ptr<char> s1 : count(10) = malloc(10);
 _Array_ptr<char> s2 : count(5) = malloc(5);
 ...
 strncpy(s1, s2, 5);
 ...
}

s1 and s2 are bounds-checked at the call site.
can compile and run, as both src and dst are in bounds.

strncpy(s1, s2, 6);

error: argument does not meet declared bounds for 2nd parameter
 strncpy(s1, s2, 6);
 ^~~~

Design Principles of Checked C

87

• High performance
‣ New checked pointer types and static checking

• Good human readability and long-term maintainability
‣ Explicit checked pointers and bounds information of memory objects

• Easy incremental porting legacy C code
‣ Mixing checked and legacy C code at fine granularity

‣ Good backward compatibility via bounds-safe interfaces

Attempts at a General Definition of Safety

88

• A programming language can be considered safe if
‣ You can trust the abstractions provided by the programming language.

In other words, the language enforces these abstractions and
guarantees that they cannot be broken.
- E.g., a boolean is either true or false, and never 23 or null.

- Programmers do not need to care how “true/false” is represented in the machine.

• Programs have precise & well defined semantics (i.e., meaning)
‣ More generally, leaving things undefined in any specification is asking

for security trouble.

