CSCI 4907/6545 Software Security
Fall 2025

Instructor: Jie Zhou

Department of Computer Science
George Washington University

GW

Slides materials are partially credited to Erik Poll of Radboud University.

Outline

* Review: Address Sanitizer & Pointer-based Memory Safety
e Type Safety
* Memory-safe Programming Languages

Stronger memory safety:
Catch errors when they occur.

ASan Algorithm

* Map regular memory to shadow memory

> Each byte is mapped.
> Regular memory includes valid memory objects and redzones.

« Shadow memory indicates the validity of mapped regular memory.

* Before each memory access, check the target memory’s validity by
querying its mapped shadow memory’s status.

Shadow Memory

Memory \ Memory
Shadow Shadow
“Bad % Bad
Shadow / Shadow
Memory Memory

Figure 1: AddressSanitizer memory mapping.

Shadow Memory Mapping

 Newly allocated memory heap objects are typically aligned at a
8-byte boundary.

* Any aligned 8-byte of memory is in one of 9 states:
> The first k (0 <= k <= 8) bytes are addressable.

> The remaining (8 - k) bytes are not.
* These 9 states can be encoded into one byte.

|| Addressable
B Unaddressable
Shadow

! = N W | s~ 0| N | O

[y

Google

Redzones Between Valid Memory Objects

* Page-level redzones are too coarse-grained for memory objects.
 ASan uses small redzones between each valid memory object.

> Minimum: 32 bytes; default: 128 bytes
> Larger redzones enable higher probability of detecting buffer overflows.

Object1 - Object2 - Object2 -

Mapped to shadow memory indicating
they are not addressable.

Size of Redzone

* Larger redzones enables higher probabillity of detecting buffer overflows.

* However, higher performance overhead
> More memory consumption

> Slower execution time
- Larger redzones mean more memory writes to their shadow memory.

Considerations for Engineering Sanitizers

* \What types of memory bugs to detect?

* \What kinds of operations to instrument?

* What metadata to maintain?

* \What data structures to use to manage metadata®
* What is the performance overhead budget?

* \What optimizations can we do?

* How is the compatibility with un-sanitized code?

10

Summary of ASan

* Using shadow memory to sanitize every memory access

* Detecting both spatial and temporal memory safety

* Implementation: Compiler instrumentations + run-time library support
* High performance and memory overhead

* Incomplete bug detection abillity

11

Pointer-based Memory Safety

* For each pointer, maintain information, called metadata, about
the pointed memory object

* Use the metadata to do validity checking for pointer dereference

 |deally, we would like a mechanism that is

> Comprehensive, I.e., catching all memory safety errors

> Efficient, I.e., low execution time and memory overhead

> Automatic, I1.e., minimal effort from programmers

> Backward-compatible, i.e., running smoothly with unchanged legacy code

12

Core Question:
How to manage safety metadata?

13

Managing Pointer’s Metadata

* What metadata is needed?

* How is a pointer mapped to / associated with its metadata?

* How to propagate metadata during pointer propagation (e.g., assignment)?
* How to update the metadata?

* How to perform memory safety checks using the metadata®

14

Spatial Memory Safety Bugs: Buffer Overflows

ﬁ Reading/writing a buffer out of its bounds.

int array[5]

Essential information:
» Starting address (base/lower bound)

_ > Ending address (upper bound)
legal llegal Obiject size

parr

15

Key-lock Checking for Temporal Memory Safety

e.g. lock = 0;
0: 20"
Ox10ff

142
’ check_if key matches_lock(ptr);
ptr ptr—>num = 30;

0x1000

=P Assign memory object a lock and pointer a key
=P |nitialize key and lock to the same value
=P |nvalidate lock upon memory deallocation

=P Dynamically check if key matches lock

Charles Fischer and Richard LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.
1980 |IEEE Transactions on Software Engineering

16

SoftBoundCETS’ Metadata Management

* Record metadata in a disjoint memory region

* E.g., p and g points to different sub-fields in the same memory object,
so they maintain different base-upper bounds but the same key-lock.

& p:0x50
0x50

0x54

0x
{ Spatial —| |- Temporal
oxa0 ~{ q:0x70 0x70 | 0x74 | 5 | 0xB0

base bound key lock

—
lock

locations 0xBO
1

| |
"metadata in a disjoint space '

SoftBoundCETS

* Achieves full memory safety with good backward-compatibility

* However, very high performance overhead.

> ~75% on SPEC CPU2006, reported in 2015, based on LLVM-3.4.
»140% on 8 C SPEC CPU2017 benchmarks, reported in 2024, based on LLVM-12

E 250 mm softboundcets mm softboundcets-store

5 200

2 150 -

< 100 -

10 §

5 T 0 B i B B N i

a¥ %%Q < &es‘b :\56 ‘2;'(&‘3 &&Q Q‘b@eﬂ 1}(2') &c& & (&\ e \&’z“\q/b&‘e& \«0(0% 0‘0611: 6@%6
9

Figure 6 Runtime execution time overheads of the Soft BoundCETS compiler prototype with
comprehensive memory safety checking (left bar of each stack) and while checking only stores (right
bar of each stack) on a Intel Haswell machine. Smaller bars are better as they represent lower
runtime overheads.

Why is this approach slow? .

SoftBoundCETS’ Metadata Management

* Use a two-level lookup trie to locate the metadata
> Use a pointer’s address as the initial lookup index

Primary trie Secondary trie

‘ Trie root ptr i ! B> ! ; B>
—> > | I
|

L H—D (key, lock addr) base, upper_bound
|
|

Memory
Pointer

I_I ‘ —> > ptr

L |- 22 bits 4 |- 23 bits - J

Figure 3. Organization of the trie for pointer metadata

* Loading metadata:14 x86-64 instructions
» Storing metadata: 16 x86-64 instructions

19

Fat Pointers

* Pointer representation carries metadata besides the raw pointer (address).

raw ptr

Fat pointer:
metadata

* One implementation

struct _safe_ptr {
voild *raw_ptr;
vold xbase addr;
vold xupper_bound;
uintod_t key;
vold *lock _addr;

20

How do fat pointers interact
with legacy library code?

Legacy libraries are unaware
of the new fat pointers.

21

Type Compatibility with Unchanged Code

* One implementation

struct safe_ptr {
char xraw_ptr;
char xbase addr;
char supper_bound;
uintod_t key;
vold xlock _addr;

char xstrchr(const char xs, int c):

How to pass a safe_ptrto strchr()?

strchr () returns a raw pointers.
How to make it a safe_ptr?

22

Memory Layout Compatibility with Unchanged Code

| | Address Space
char *xlib_foo(char sxp, size t n, ..);

ptr

v metadataT
ptr2
safe _ptr p metadata?

ptrn

metadatan

Lib_foo would misinterpret metadata as pointers!

23

Solutions to Backward Compatibility Issues

* Porting library functions using fat pointers
> Pros: complete and secure
> Cons: high programmer effort; not always viable

* Mixing using raw pointers and fat pointers
> Pros: easy to implement
> Cons: security hazards

* Hybrid of disjoint and in-place metadata

> Pros: secure
> Cons: complex and slow
* Data marshaling
> How much program effort is required?
> What is the performance overhead?

24

Compatibility Issues with Disjoint Metadata Scheme

vold gsort(void *xbase, size t n, size t width, int (xcompar)(const void %, const void *));

e gsort: Sort an array of n item, each of size width, using function compar.
> E.g., Use a greater_than() function to sort an array of n integers.

* \What about sorting an array of pointers??

> SoftBoundCETS’ metadata lookup procedure will not work!
- It uses a pointer’s address to index the metadata.
> SoftBound’s solution: Rewrite gsort () considering the associated metadata

25

Strengths and Weaknesses of Fat Pointers

* Good performance
> Run-time can (very) quickly finds metadata to use.

 Difficult to interoperate with libraries that do not use fat pointers
> Need wrappers to convert fat pointers to raw pointers and vice versa
> Need to change memory layout of data structures

20

“Well-typed programs cannot go wrong.”

Robin Milner

27

What is type In the context of
programming languages?

28

Architecture of Modern Computers

29

What is type In the context of
programming languages?

30

Type and Type System

Wikipedia

A data type (or simply type) is a collection or grouping of data values, usually
specified by a set of possible values, a set of allowed operations on these
values, and/or a representation of these values as machine types.

In computer programming, a type system is a logical system comprising a set
of rules that assigns a property called a type (for example, integer, floating
point, string) to every term (a word, phrase, or other set of symbols). A type
system dictates the operations that can be performed on a term.

Usually the terms are various language constructs of a computer program, such
as variables, expressions, functions, or modules.

For variables, the type system determines the allowed values of that term.

31

“A language Is type-safe if the only
operations that can be performed on data
In the language are those sanctioned by
the type of the data.”

Vijay Saraswat

32

Type Safety

upper_bound

Lifetime

m operate/control
—

other properties

base

* A sound and safe type system must carefully specify what
operations can be performed on the data controlled by the
data handler/operator/controller, and what operations are
allowed on the handler/operator/controller itself.

* A type-safe language has a sound and safe type system
that can be respected.

33

Can memory safety be considered
one aspect of type safety?

34

Spatial Memory Safety Bugs: Buffer Overflows

ﬁ Reading/writing a buffer out of its bounds.

int array[5]

Essential information:
» Starting address (base/lower bound)

_ > Ending address (upper bound)
legal llegal Obiject size

parr

35

Every programming language
has Its type system.

36

Type and Type System

e Statically-typed vs. dynamically-typed type system / languages
» Statically-typed: Data types are known at compile time
- E.g., C/C++, Java, Rust
> Dynamically-typed: Data types are known at run-time
- E.g., Python, Javascript
e Strongly-typed vs. weakly-typed type system / languages
» Strongly-typed: Enforcing strict type rules that cannot be broken.
- E.g., Java, Rust, Python
> Weakly-typed: Allowing easily breaking the type rules
- E.g., C/C++, Javascript

37

Type System Can Go CRAZY!

38

Javascript’s Array

var arr = [];
alert(arr.length); wp “Q"
alert(arr(3]); ——————p “ArrayIndexOutOfBoundsException”

This slide is credited to Prof. James Mickens @Harvard

39

Javascript’s Array

var arr = [1;
alert(arr.length); =) “Q”

alert(arr(3]);) “yndefined”
arrl3] = “N1"; eos—) Nothing happened.
alert(arr.length); s=p “4"”
alert(arr(3]); ——————p hi”
alert(arr[“3"]); =—) hi"

delete arrl[3];

alert(arr.length);) 4"

alert(arr[3]); -———— ‘‘gndefined”

This slide is credited to Prof. James Mickens @Harvard

40

Type Casting

» Converting one type to another.

* May cause type confusion when used incautiously.
> Leading to vulnerabilities, e.q., calling a function chosen by attackers.

41

Vulnerabilities Caused By UAF

struct N { long usr; long pwd; int (xfn)(void); };
struct 0 { int (skoper)(void); long ul; long u2; };

OCoO0ONOUILES, WN -

void foo(long uid, long secret) {

}

struct N xp = malloc(sizeof(struct N));

p—>fn = _ safe_function_1;
p—>usr = uid;

p—>pwd = secret;

p—>fn();

void bar(long userl, long user2) {

struct 0 *xx = malloc(sizeof(struct 0Q));

X—>oper = __ safe_function_2;
structO0 *xq = X;

free(x);

q—>oper();

g—>ul = userl,;

g—>u2 = user2;

reply("Users: %1 | %1", gq—>ul, gq—>u2);
free(q);

e Write through p and read through
leads to arbitrary code execution.

» exploit path: 16->5->7->17

g

42

Type Casting in C

e Implicit/automatic casting
» Compiler automatically/silently converts a variable from one type to another.

> Occurs during assignments, argument passing, and mixed-type expressions
> E.g., Adding up two integers with different sizes

43

Vulnerability: Truncation Errors

int func(char sname, unsigned int cbBuf) {
unsigned short bufSize = cbBuf;
char xbuf = (char x)malloc(bufSize);
if (buf) {
memcpy (buf, name, cbBuf);

free(buf);
return 9;
s
return 1;

What if we call the function with cbBuf greater than 2216 -17?

44

Type Casting in C

e Implicit/automatic casting
» Compiler automatically/silently converts a variable from one type to another.

> Occurs during assignments, argument passing, and mixed-type expressions
> E.g., Adding up two integers with different sizes

* Explicit casting
> Use a cast operator “(type)” to convert a variable to anther type
»E.g.,int 1 = 5; float f = (float)i;

45

Type Casting in C++

* C++ IS an object-oriented programming language.
» Supporting hierarchical types

 Two common types of casts: upcast and downcast.
> Upcast is safe, but downcast may not be.

DOMText DOMElement
Impl Impl

46

Type Casting in C++

* Four explicit type-cast operators

static_cast <type >(expression)
dynamic_cast<type >(expression)
reinterpret_cast <type >(expression)
const_cast<type >(expression)

47

static_cast<target type>(expression)

* Explicitly converting one type to another
e Static type checking at compile time; no runtime type checking
> Only allows casts between compatible types along the type hierarchy

- E.g., cast between a floating-point variable to an integer
- E.g., cast between pointers to an object and its ancestor object type

* Similar to implicit type cast (conversion)
* Weak safety guarantees, e.g., allowing downcast.

48

const_cast<target_ type>(expression)

* Removes the constness of a reference/pointer
- Commonly used to remove const from an object that was originally mutable
* Incurs undefined behavior if using it to modify a truly constant object
void changeValue(const intx ptr) A
intx modifiablePtr = const cast<intx>(ptr);

*modifiablePtr = 10; // Undefined behavior 1if
// ptr points to a const object

}

* No type confusion issues.

49

reinterpret_cast<target_ type>(expression)

» Conversion between any two types

* Reinterpret the underlying bits of an object as the target type.

« Commonly used to cast between pointers to incompatible types.
* Very unsafe!

struct A {
int x;
double vy;
b

struct B {
char c;
int 1;
&
int main() {
A a{42, 3.14};
Bx b = reinterpret cast<B*>(&a);

// Accessing members of B via b 1s unsafe and can cause undefined behavior.

std::cout << "B's i (as int): " << b—>i << std::endl;
std::cout << "B's ¢ (as char): " << b->c << std::endl; What are printed OUt?
return 0;

50

dynamic_cast<target type>(expression)

* Intended for safe casting within an inheritance hierarchy.
« Commonly used for downcast.
* Runtime check to ensure the cast is safe.

> Use C++’s RTTI to determine the concrete type at runtime

51

C++’s Run-time Type Information (RTTI)

* A mechanism exposing a memory object’s type at run-time
* In C++, only works for classes with virtual functions

* Given a pointer to an object, RTTI uses it to query the object’s vtable, and
then find the RTTI entry for the object’s type, and recursively query RTTI
entries to find a compatible type for the casting target type.

vtable of Base vtable of Derived

52

dynamic_cast<target type>(expression)

* Intended for safe casting within an inheritance hierarchy.
« Commonly used for downcast.

e Runtime check to ensure the cast is safe.

» Use C++’s RTTI to determine the concrete type of pointed object at run-time
> Follow the inheritance hierarchy to verify if this is a upcast

* For failed check, return null or a pre-defined exception
* Provide safety, but at high performance and code size cost
* Only support polymorphic objects with virtual functions

53

Type confusion Iis a major source
of vulnerabilities in C/C++ programs.

54

HexType: A Faster and More Comprehensive Solution

* A compiler-based tool detecting type casting errors at run-time

* Maintaining a type table recording all class inheritance information

* Maintaining an object-type mapping table

 Dynamically checking if a type casting operating (e.g., static_cast) is safe.

55

HexType: Type Hierarchy Mapping

e Extract all type relationship information about classes
* Hash each type name to a string hash
* Generate a list of hash values as a global variable for each type

Q° DomCharacter] [DomD
omCharacter| [DomDocument DOMElement | =
Data Type
DOMText DOMEIlement
Impl Impl

e E.g., DOMElementImpl: H(DOMElement), H(DOMNode),

HexType: Type Table for Fast Lookup and Verification

* A Hybrid data structure mapping a object’s address to its type

» Hash table + red-black tree
- Fast lookup for frequently visited objects in the hash table

- Slow lookup for first-time visited objects

Fast-path Slot
Slow-

Type path Slot
Relationship | (RB-tree

Allocated Hashvalue
Object for Object

Ref

Name

Information
Ref

Ref) Per-entry

0x417000

2341234

0x51723D

0x41563C

1312321

0x51724D

0x41723D

7231234

0x51724D

0x41563E

4232123

0x51623D

 Instrument unsafe type casts, mainly static_cast and reinterpret _cast
> Query the type table to find if the target type is compatible

57

Safe Programming Languages

58

Language-based Security

. Enforcing security properties using programming language
features and techniques.

e Safety guarantees

> Memory safety, type-safety, thread-safety
* Forms of access control

> Visibility/access restrictions with e.g. public, private, const

» Sandboxing mechanisms inside programming language
- E.g., Python’s exec () with controlled environments

* Forms of information flow

 Examples: CFl, SFI, ASan, SoftBound, etc.
> Retrofitting memory safety into existing software

59

Other Ways Programming Languages Can Help

» Offering good APIs/libraries

> APls with parameterized queries/prepared statements for SQL
> More secure string libraries for C

* Making assurances of the security easier

> Being able to understand code in a modular way
> Only having to review the public interface, in a code review

» Offering convenient languages features
> E.9., mechanism for exception handling

60

Safe Programming Languages:
Languages with Built-in Security Guarantees

61

Does writing in a safe language
ensure secure programs?

62

Of Course Not!

“Safe” Programming Languages

* You can write insecure programs in ANY programming language.
> Flaws In the program logic can never be ruled out.
e Still, some safety features can be nice.

> Preventing entire classes of bugs
> At least mitigate their impact

oz

Safe Programming Languages

e Safe programming languages
> Impose some discipline or restrictions on the programmer
- E.g., raw pointers are disallowed in Java.
> offer some abstractions to the programmer, with associated guarantees
- E.g., accessing an array in Java/Python will be enforced with bounds check.

* This takes away some freedom & flexibility from the programmer, but
hopefully extra safety and easier understanding makes it worth this.

65

Attempts at a General Definition of Safety

* A programming language can be considered safe if

> You can trust the abstractions provided by the programming language.
In other words, the language enforces these abstractions and
guarantees that they cannot be broken.

- E.g., a boolean is either true or false, and never 23 or null.
- Programmers do not need to care how “true/false” is represented in the machine.

* Programs have precise & well defined semantics (i.e., meaning)
> More generally, leaving things undefined in any specification is asking
for security trouble.

60

“A language Is type-safe if the only
operations that can be performed on data
In the language are those sanctioned by
the type of the data.”

Vijay Saraswat

6/

Attempts at a General Definition of Safety

* A programming language can be considered safe if

> You can trust the abstractions provided by the programming language.

In other words, the language enforces these abstractions and
guarantees that they cannot be broken.

- E.g., a boolean is either true or false, and never 23 or null.

* Programs have a precise & well defined semantics (i.e., meaning)
> More generally, leaving things undefined in any specification is asking
for security trouble.
* You can understand the behavior of programs in a modular way.

63

“Safer” and “Unsafer” Languages

machine code Java Scala Haskell
C MISRA-C C# Clean
ML
C++ OCaml
Rust
Prolog
more 'unsafe’ 'safe’ even more 'safe’
— _—

Warning: this is overly simplistic, as there are many dimensions of
safetly

Spoiler alert: functional languages such as Haskell are safe because
data is immutable (no side-effects)

69

Dimensions & Level of Safety

* There are many dimensions of safety: memory safety, type safety,
thread safety, arithmetic safety, guarantees about non-nuliness,
about immutabillity, ...

* For some dimensions, there can be many levels of safety.

EQg, in increasing level of safety, going outside array bounds may:

1. let an attacker inject arbitrary code ‘unsafe’;
, some undefined
2. possibly crash the program (or else corrupt some data) | comactics
3. definitely crash the program
4. throw an exception, which the program can catch 'safe’

to handle the issue gracefully

5. be ruled out at compile-time

70

Safety: How?

 Mechanism to provide safety include
» Compile-time checks, e.qg., type checking
> Run-time checks, e.q., array bounds checks, null-ptr checks, etc.
> Automated memory management using a garbage collector
> Using an execution engine to do the things above

- E.g., Java Virtual Machine (JVM) which performs runtime checks
and periodically invokes the garbage collector, etc.

/1

Compiled Binaries vs. Execution Engines

Compiled binary runs on bare

Execution engine (aka ‘runtime’) isolates

hardware code from hardware
high level high level
code code N
Oo'b 0’76,. lower level code
'°’7e,. (eg Java bytecode)
compiled execution engine
binary (eg Java VM)

hardware

Any defensive measures have to be
compiled into the code.

hardware

The programming language / platform
still ‘exists’ at runtime, and the
execution engine can provide checks at
runtime

(2

Case Study
Checked C: A Safe Extension to C

73

Checked C

* Originating from Microsoft Research
* A new extension to C, aiming for memory safety and type safety
* Open-sourced from its inception

4

Design Principles of Checked C

* High performance
> New checked pointer types and static checking
 Good human readability and long-term maintainability
> Explicit checked pointers and bounds information of memory objects

* Easy incremental porting legacy C code
> Mixing checked and legacy C code at fine granularity

» Good backward compatibility via bounds-safe interfaces

79

Checked Pointers

» Ptr<T>: pointer to a singleton object of type T
e Array_ptr<T>: pointer to an array of type T
e Nt _array_ptr<IT>: pointer to a null-terminated (ends with \\O’) array of type T

/0

Checked Pointer: Ptr<T>

 Ptr<IT>: pointer to a singleton object of type T
> No pointer arithmetic or subscripting allowed

struct Data {
int val;
Long Llval;

&

_Ptr<struct Data> p = malloc(sizeof(struct Data));

printf(“val = %d\n®, pz>vall;, null-pointer check inserted by compiler, if not

D++; determined at compile time
- 5 error: arithmetic on _Ptr type
p++;

A
NN

7

Checked Pointer: _Array_ptr<T>

e Array_Ptr<T>: pointer to an array of object of type T

> Permits pointer arithmetic and subscripting
> Bounds declared by programmers
> Bounds check inserted by compiler when not provable at compile time

_Array_ptr<int> p = malloc(sizeof(int) * BUF_LEN);

int 1 =pl5l orpor: expression has unknown bounds
| int i = p[5];

NNV

/83

Bounds Declaration for _Array_ptr<I>

_Array_ptr<T> p : count(bounds_expr) = ..;

#define BUF LEN 30
_Array_ptr<int> p : count(BUF_LEN) = malloc(sizeof(int) * BUF_LEN);

int 1 = pl[5];
p_} no dynamic check inserted because compiler knows BUF_LEN > 5

int j = p[3@l;error: out-of-bounds memory access

int j = pl[301];
int k = plvarl; , S , L .
— null-pointer and bounds check inserted by compiler, if var < BUF_LEN is not provable

_Array_ptr<int> p : count(BUF_LEN / 2) = malloc(sizeof(int) x BUF_LEN);

. . "allowed
it 3 = pl5] orror: out-of-bounds memory access

int j = pl15];

Array_ptr<int> p : count(BUF_LEN + 1) = malloc(sizeof(int) x BUF_LEN);

error: declared bounds for 'p' are invalid after initialization

Because p’s boundsis[p, p + 14)

79

Bounds Declaration for _Array_ptr<I>

_Array_ptr<T> p : count(lower_bound, upper_bound) = ..;

#define BUF_LEN 30
_Array_ptr<int> p@ : count(BUF_LEN) = malloc(sizeof(int) * BUF_LEN);

_Array_ptr<int> pl : bounds(p@, p@ + BUF_LEN / 2) = p0;

int i = p1[15];
_error: out-of-bounds memory access
int 1 = pl1[15];

A
NNV

30

Design Principles of Checked C

* Easy incremental porting legacy C code
> Mixing checked and legacy C code at fine granularity

» Good backward compatibility via bounds-safe interfaces

31

Checked Region

* New keyword: _Checked
> Annotating a block of code, from a single statement to a whole source file
> Enforcing more strict typing rules, e.g., only checked pointers allowed
> Helping programmers to narrow down the scope of memory safety bugs:
- Checked regions are provably blameless of causing spatial memory safety errors.

* Unchecked regions: Force the compiler to omit checking

82

Backward Compatibility with Legacy C Code

* Checked pointers and raw pointers are incompatible by default.

char sstrncpy(char *dst, const char %src, size t len);

void foo() {
_Array_ptr<char> s1 : count(10) = malloc(10);
_Array_ptr<char> s2 : count(5) = malloc(5);

dst = strncpy(sl, s2, 5);

error: passing ' _Array_ptr<char>' to parameter of incompatible type 'const char x'
strncpy(sl, s2, 5);

N

83

Backward Compatibility with Legacy C Code

char xstrncpy(_Array_ptr<char> dst : count(n),
_Array_ptr<const char> src : count(n), size t n);

void foo() {
_Array_ptr<char> s1 : count(10) = malloc(10);
_Array_ptr<char> s2 : count(5) = malloc(5);

dst = strncpy(sl, s2, 5); legal
}

What about calling strncpy () from unchecked C code?

void bar() {
char sl
char *xs2

malloc(10); Can we have an mechanism working for
matloc(5); both checked and unchecked code?

strncpy(sl, s2, 5);

34

Bounds-safe Interface for strncpy()

char *kstrncpy(char xdst : itype(_Array_ptr<char>) byte_count(n),
const char xsrc : itype(_Array_ptr<const char>) byte count(n),
size t n) : itype(_Array ptr<T>) byte_count(n);

1type (inter-operation type): A special type that can be either checked or unchecked type,
depending on the context

dst is set to an 1type with bounds of n bytes.
srcis set to an 1type with bounds of n bytes.
Return value is set to an 1type with bounds of n bytes.

void bar() {
char xsil
char xs2

malloc(10):
malloc(5):

strncpy(sl, s2, 5); / can compile and run, no bounds checks performed

85

Bounds-safe Interface for strncpy()

char kstrncpy(char *dst : itype(_Array_ptr<char>) byte_count(n),
const char xsrc : itype(_Array_ptr<const char>) byte count(n),
size t n) : itype(_Array ptr<T>) byte count(n);

void foo() {
_Array_ptr<char> s1 : count(10) = malloc(10);
_Array_ptr<char> s2 : count(5) = malloc(5);

strncpy(sl, s2, 5);

s1 and s2 are bounds-checked at the call site.
} / can compile and run, as both src and dst are in bounds.

strncpy(sl, s2, 6);

N

error: argument does not meet declared bounds for 2nd parameter
strncpy(sl, s2, 6);

NN

86

Design Principles of Checked C

* High performance
> New checked pointer types and static checking
 Good human readability and long-term maintainability
> Explicit checked pointers and bounds information of memory objects

* Easy incremental porting legacy C code
> Mixing checked and legacy C code at fine granularity

» Good backward compatibility via bounds-safe interfaces

87

Attempts at a General Definition of Safety

* A programming language can be considered safe if

> You can trust the abstractions provided by the programming language.
In other words, the language enforces these abstractions and
guarantees that they cannot be broken.

- E.g., a boolean is either true or false, and never 23 or null.
- Programmers do not need to care how “true/false” is represented in the machine.

* Programs have precise & well defined semantics (i.e., meaning)
> More generally, leaving things undefined in any specification is asking
for security trouble.

883

