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Outline
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• Review: Address Sanitizer & Pointer-based Memory Safety 
• Type Safety 
• Memory-safe Programming Languages



Stronger memory safety: 
Catch errors when they occur.
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ASan Algorithm
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• Map regular memory to shadow memory
‣ Each byte is mapped.

‣ Regular memory includes valid memory objects and redzones.

• Shadow memory indicates the validity of mapped regular memory.
• Before each memory access, check the target memory’s validity by 

querying its mapped shadow memory’s status.



Shadow Memory
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Shadow Memory Mapping
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• Newly allocated memory heap objects are typically aligned at a 
8-byte boundary.

• Any aligned 8-byte of memory is in one of 9 states:
‣ The first k (0 <= k <= 8) bytes are addressable.

‣ The remaining (8 - k) bytes are not.

• These 9 states can be encoded into one byte.



Redzones Between Valid Memory Objects 
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• Page-level redzones are too coarse-grained for memory objects.

• ASan uses small redzones between each valid memory object.
‣ Minimum: 32 bytes; default: 128 bytes

Object1 RZ2RZ1 Object2 RZ3 Object2 RZ4

Mapped to shadow memory indicating 
they are not addressable.

‣ Larger redzones enable higher probability of detecting buffer overflows.



Size of Redzone
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• Larger redzones enables higher probability of detecting buffer overflows.
• However, higher performance overhead
‣ More memory consumption

‣ Slower execution time

- Larger redzones mean more memory writes to their shadow memory.



Considerations for Engineering Sanitizers
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• What types of memory bugs to detect?

• What kinds of operations to instrument?

• What metadata to maintain?

• What data structures to use to manage metadata?

• What is the performance overhead budget?

• What optimizations can we do?

• How is the compatibility with un-sanitized code?



Summary of ASan
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• Using shadow memory to sanitize every memory access

• Detecting both spatial and temporal memory safety

• Implementation: Compiler instrumentations + run-time library support

• High performance and memory overhead

• Incomplete bug detection ability



Pointer-based Memory Safety
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• For each pointer, maintain information, called metadata, about 
the pointed memory object

• Use the metadata to do validity checking for pointer dereference
• Ideally, we would like a mechanism that is
‣ Comprehensive, i.e., catching all memory safety errors

‣ Efficient, i.e., low execution time and memory overhead

‣ Automatic, i.e., minimal effort from programmers

‣ Backward-compatible, i.e., running smoothly with unchanged legacy code



Core Question: 
How to manage safety metadata?
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Managing Pointer’s Metadata
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• What metadata is needed?

• How is a pointer mapped to / associated with its metadata?

• How to propagate metadata during pointer propagation (e.g., assignment)?

• How to update the metadata?

• How to perform memory safety checks using the metadata?



Spatial Memory Safety Bugs: Buffer Overflows
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Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

legal illegal

Essential information:
‣ Starting address (base/lower bound)

‣ Ending address (upper bound)

‣ Object size



:42

Key-lock Checking for Temporal Memory Safety

ptr->num = 30;
check_if_key_matches_lock(ptr);

Charles Fischer and Richard LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.

1980 IEEE Transactions on Software Engineering

ptr memory 
object
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Assign memory object a lock and pointer a key
Initialize key and lock to the same value
Invalidate lock upon memory deallocation
Dynamically check if key matches lock

0x1000

0x10ff:42
X e.g. lock = 0;



SoftBoundCETS’ Metadata Management
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• Record metadata in a disjoint memory region
• E.g., p and q points to different sub-fields in the same memory object, 

so they maintain different base-upper bounds but the same key-lock.



SoftBoundCETS
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• Achieves full memory safety with good backward-compatibility
• However, very high performance overhead.

Why is this approach slow?

‣ ~75% on SPEC CPU2006, reported in 2015, based on LLVM-3.4.

‣ 140% on 8 C SPEC CPU2017 benchmarks, reported in 2024, based on LLVM-12



SoftBoundCETS’ Metadata Management
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,base, upper_bound

• Use a two-level lookup trie to locate the metadata
‣ Use a pointer’s address as the initial lookup index

• Loading metadata:14 x86-64 instructions

• Storing metadata: 16 x86-64 instructions



Fat Pointers
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• Pointer representation carries metadata besides the raw pointer (address).

raw ptrFat pointer:
metadata

struct _safe_ptr {                                                                                   
    void *raw_ptr;                                                                                      
    void *base_addr;                                                                                    
    void *upper_bound;                                                                                  
    uint64_t key;                                                                                       
    void *lock_addr;                                                                                 
};

• One implementation



Legacy libraries are unaware 
of the new fat pointers.

How do fat pointers interact 
with legacy library code?
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Type Compatibility with Unchanged Code
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struct safe_ptr {                                                                                   
    char *raw_ptr;                                                                                      
    char *base_addr;                                                                                    
    char *upper_bound;                                                                                  
    uint64_t key;                                                                                       
    void *lock_addr;                                                                                 
};

• One implementation

char *strchr(const char *s, int c);

How to pass a safe_ptr to strchr()?
strchr() returns a raw pointers. 
How to make it a safe_ptr?



Memory Layout Compatibility with Unchanged Code

ptr1
metadata1

ptr2
metadata2

ptrn
……

metadatan

lib_foo would misinterpret metadata as pointers!
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char *lib_foo(char **p, size_t n, …);
Address Space

safe_ptr p



Solutions to Backward Compatibility Issues
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• Porting library functions using fat pointers
‣ Pros: complete and secure

‣ Cons: high programmer effort; not always viable

• Mixing using raw pointers and fat pointers
‣ Pros: easy to implement

‣ Cons: security hazards
• Hybrid of disjoint and in-place metadata
‣ Pros: secure

‣ Cons: complex and slow
• Data marshaling
‣ How much program effort is required?

‣ What is the performance overhead?



Compatibility Issues with Disjoint Metadata Scheme
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void qsort(void *base, size_t n, size_t width, int (*compar)(const void *, const void *)); 

• What about sorting an array of pointers?

‣ SoftBound’s solution: Rewrite qsort() considering the associated metadata

• qsort: Sort an array of n item, each of size width, using function compar.
‣ E.g., Use a greater_than() function to sort an array of n integers.

‣ SoftBoundCETS’ metadata lookup procedure will not work!
- It uses a pointer’s address to index the metadata.



Strengths and Weaknesses of Fat Pointers
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• Good performance

• Difficult to interoperate with libraries that do not use fat pointers
‣ Run-time can (very) quickly finds metadata to use.

‣ Need wrappers to convert fat pointers to raw pointers and vice versa
‣ Need to change memory layout of data structures



“Well-typed programs cannot go wrong.”
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Robin Milner



What is type in the context of 
programming languages?
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Architecture of Modern Computers
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Input Output

Computing

Memory



What is type in the context of 
programming languages?
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Type and Type System
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In computer programming, a type system is a logical system comprising a set 
of rules that assigns a property called a type (for example, integer, floating 
point, string) to every term (a word, phrase, or other set of symbols). A type 
system dictates the operations that can be performed on a term.
Usually the terms are various language constructs of a computer program, such 
as variables, expressions, functions, or modules.
For variables, the type system determines the allowed values of that term.

Wikipedia

A data type (or simply type) is a collection or grouping of data values, usually 
specified by a set of possible values, a set of allowed operations on these 
values, and/or a representation of these values as machine types.



“A language is type-safe if the only 
operations that can be performed on data 
in the language are those sanctioned by 

the type of the data.”
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Vijay Saraswat



Type Safety
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• A sound and safe type system must carefully specify what 
operations can be performed on the data controlled by the 
data handler/operator/controller, and what operations are 
allowed on the handler/operator/controller itself.

upper_bound

base

memory 
object

lifetime
other properties

operate/control

• A type-safe language has a sound and safe type system 
that can be respected.



Can memory safety be considered 
one aspect of type safety?
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Spatial Memory Safety Bugs: Buffer Overflows
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Reading/writing a buffer out of its bounds.

p_arr

int array[5]

1 2 3 4 55 … 4.2

legal illegal

Essential information:
‣ Starting address (base/lower bound)

‣ Ending address (upper bound)

‣ Object size



Every programming language 
has its type system.

36



Type and Type System
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• Statically-typed vs. dynamically-typed type system / languages
‣ Statically-typed: Data types are known at compile time

- E.g., C/C++, Java, Rust
‣ Dynamically-typed: Data types are known at run-time

- E.g., Python, Javascript
• Strongly-typed vs. weakly-typed type system / languages
‣ Strongly-typed: Enforcing strict type rules that cannot be broken.

‣ Weakly-typed: Allowing easily breaking the type rules
- E.g., Java, Rust, Python

- E.g., C/C++, Javascript



Type System Can Go CRAZY!
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Javascript’s Array
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“ArrayIndexOutOfBoundsException”

This slide is credited to Prof. James Mickens @Harvard

var arr = [];
alert(arr.length); “0”
alert(arr[3]);



Javascript’s Array
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var arr = [];
alert(arr.length); “0”
alert(arr[3]); “undefined”
arr[3] = “hi”;
alert(arr.length); “4”

alert(arr[“3”]); “hi”
delete arr[3];

This slide is credited to Prof. James Mickens @Harvard

alert(arr.length); “4”
alert(arr[3]); “undefined”

Nothing happened.

alert(arr[3]); “hi”



Type Casting
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• Converting one type to another.

• May cause type confusion when used incautiously.
‣ Leading to vulnerabilities, e.g., calling a function chosen by attackers.



Vulnerabilities Caused By UAF
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  1 struct N { long usr; long pwd; int (*fn)(void); };                               
  2 struct O { int (*oper)(void); long u1; long u2; };                               
  3                                                                                  
  4 void foo(long uid, long secret) {                                                
  5     struct N *p = malloc(sizeof(struct N));                                      
  6     p->fn = __safe_function_1;                                                   
  7     p->usr = uid;                                                                
  8     p->pwd = secret;                                                             
  9     p->fn();                                                                     
 10 }                                                                                
 11                                                                                  
 12 void bar(long user1, long user2) {                                               
 13     struct O *x = malloc(sizeof(struct O));                                      
 14     x->oper = __safe_function_2;                                            
 15     structO *q = x;                                                                 
 16     free(x);                                                                     
 17     q->oper();                                                                   
 18     q->u1 = user1;                                                               
 19     q->u2 = user2;                                                               
 20     reply("Users: %l | %l", q->u1, q->u2);                                       
 21     free(q);                                                                     
 22 } 

• Write through p and read through q 
leads to arbitrary code execution.
‣ exploit path: 16->5->7->17



Type Casting in C
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• Implicit/automatic casting
‣ Compiler automatically/silently converts a variable from one type to another.

‣ Occurs during assignments, argument passing, and mixed-type expressions

‣ E.g., Adding up two integers with different sizes



Vulnerability: Truncation Errors
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int func(char *name, unsigned int cbBuf) {                                          
    unsigned short bufSize = cbBuf;                                                 
    char *buf = (char *)malloc(bufSize);                                            
    if (buf) {                                                                      
        memcpy(buf, name, cbBuf);                                                   
        …                                                                           
        free(buf);                                                                  
        return 0;                                                                   
    }                                                                               
    return 1;                                                                       
} 

What if we call the function with cbBuf greater than 2^16 -1?



Type Casting in C
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• Implicit/automatic casting

• Explicit casting

‣ Compiler automatically/silently converts a variable from one type to another.

‣ Occurs during assignments, argument passing, and mixed-type expressions

‣ E.g., Adding up two integers with different sizes

‣ Use a cast operator “(type)” to convert a variable to anther type

‣ E.g., int i = 5; float f = (float)i;



Type Casting in C++
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• C++ is an object-oriented programming language.
‣ Supporting hierarchical types

• Two common types of casts: upcast and downcast. 
‣ Upcast is safe, but downcast may not be.



Type Casting in C++
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• Four explicit type-cast operators



static_cast<target_type>(expression)
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• Explicitly converting one type to another

• Static type checking at compile time; no runtime type checking
‣ Only allows casts between compatible types along the type hierarchy

- E.g., cast between a floating-point variable to an integer

- E.g., cast between pointers to an object and its ancestor object type

• Similar to implicit type cast (conversion)

• Weak safety guarantees, e.g., allowing downcast.



const_cast<target_type>(expression)
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• Removes the constness of a reference/pointer


void changeValue(const int* ptr) {                                                                      
    int* modifiablePtr = const_cast<int*>(ptr);                                                      
    *modifiablePtr = 10; // Undefined behavior if 

           // ptr points to a const object                       
}

• No type confusion issues.

• Incurs undefined behavior if using it to modify a truly constant object
- Commonly used to remove const from an object that was originally mutable



reinterpret_cast<target_type>(expression)
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• Conversion between any two types

• Reinterpret the underlying bits of an object as the target type.

• Commonly used to cast between pointers to incompatible types.

• Very unsafe!

struct A {                                                                                              
    int x;                                                                                              
    double y;                                                                                           
};                                                                                                      
                                                                                                        
struct B {                                                                                              
    char c;                                                                                             
    int i;                                                                                              
};                                                                                                      
                                                                                                        
int main() {                                                                                            
    A a{42, 3.14};                                                                                                                                                                                     
    B* b = reinterpret_cast<B*>(&a);                                                                    
                                                                                                        
    // Accessing members of B via b is unsafe and can cause undefined behavior.                          
    std::cout << "B's i (as int): " << b->i << std::endl;                                               
    std::cout << "B's c (as char): " << b->c << std::endl;                                              
    return 0;                                                                                           
} 

What are printed out?



dynamic_cast<target_type>(expression)
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• Intended for safe casting within an inheritance hierarchy.

• Commonly used for downcast.

• Runtime check to ensure the cast is safe.
‣ Use C++’s RTTI to determine the concrete type at runtime



C++’s Run-time Type Information (RTTI)
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• A mechanism exposing a memory object’s type at run-time

• In C++, only works for classes with virtual functions
• Given a pointer to an object, RTTI uses it to query the object’s vtable, and 

then find the RTTI entry for the object’s type, and recursively query RTTI 
entries to find a compatible type for the casting target type.



dynamic_cast<target_type>(expression)
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• Intended for safe casting within an inheritance hierarchy.

• Commonly used for downcast.

• Runtime check to ensure the cast is safe.
‣ Use C++’s RTTI to determine the concrete type of pointed object at run-time

‣ Follow the inheritance hierarchy to verify if this is a upcast

• For failed check, return null or a pre-defined exception
• Provide safety, but at high performance and code size cost

• Only support polymorphic objects with virtual functions



Type confusion is a major source  
of vulnerabilities in C/C++ programs.
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HexType: A Faster and More Comprehensive Solution
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• A compiler-based tool detecting type casting errors at run-time
• Maintaining a type table recording all class inheritance information
• Maintaining an object-type mapping table
• Dynamically checking if a type casting operating (e.g., static_cast) is safe.



HexType: Type Hierarchy Mapping
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• Extract all type relationship information about classes

• Hash each type name to a string hash

• Generate a list of hash values as a global variable for each type

• E.g., DOMElementImpl: H(DOMElement), H(DOMNode), ...



HexType: Type Table for Fast Lookup and Verification
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• A Hybrid data structure mapping a object’s address to its type
‣ Hash table + red-black tree

- Fast lookup for frequently visited objects in the hash table

- Slow lookup for first-time visited objects

• Instrument unsafe type casts, mainly static_cast and reinterpret_cast
‣ Query the type table to find if the target type is compatible



Safe Programming Languages

58



Language-based Security
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Enforcing security properties using programming language 
features and techniques.

• Safety guarantees
‣ Memory safety, type-safety, thread-safety

• Forms of access control
‣ Visibility/access restrictions with e.g. public, private, const

‣ Sandboxing mechanisms inside programming language

- E.g., Python’s exec() with controlled environments
• Forms of information flow
• Examples: CFI, SFI, ASan, SoftBound, etc.
‣ Retrofitting memory safety into existing software



Other Ways Programming Languages Can Help
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• Offering good APIs/libraries
‣ APIs with parameterized queries/prepared statements for SQL

‣ More secure string libraries for C

• Making assurances of the security easier
‣ Being able to understand code in a modular way

‣ Only having to review the public interface, in a code review
• Offering convenient languages features
‣ E.g., mechanism for exception handling



Safe Programming Languages: 
Languages with Built-in Security Guarantees

61



Does writing in a safe language 
ensure secure programs?
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Of Course Not!
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“Safe” Programming Languages
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• You can write insecure programs in ANY programming language.
‣ Flaws in the program logic can never be ruled out.

• Still, some safety features can be nice.
‣ Preventing entire classes of bugs

‣ At least mitigate their impact



Safe Programming Languages
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• Safe programming languages
‣ impose some discipline or restrictions on the programmer

• This takes away some freedom & flexibility from the programmer, but 
hopefully extra safety and easier understanding makes it worth this.

- E.g., raw pointers are disallowed in Java.
‣ offer some abstractions to the programmer, with associated guarantees

- E.g., accessing an array in Java/Python will be enforced with bounds check.



Attempts at a General Definition of Safety
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• A programming language can be considered safe if
‣ You can trust the abstractions provided by the programming language. 

In other words, the language enforces these abstractions and 
guarantees that they cannot be broken.
- E.g., a boolean is either true or false, and never 23 or null.

- Programmers do not need to care how “true/false” is represented in the machine.

• Programs have precise & well defined semantics (i.e., meaning)
‣ More generally, leaving things undefined in any specification is asking 

for security trouble.



“A language is type-safe if the only 
operations that can be performed on data 
in the language are those sanctioned by 

the type of the data.”

67

Vijay Saraswat



Attempts at a General Definition of Safety
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• A programming language can be considered safe if
‣ You can trust the abstractions provided by the programming language. 

In other words, the language enforces these abstractions and 
guarantees that they cannot be broken.
- E.g., a boolean is either true or false, and never 23 or null.

• Programs have a precise & well defined semantics (i.e., meaning)
‣ More generally, leaving things undefined in any specification is asking 

for security trouble.
• You can understand the behavior of programs in a modular way.



“Safer” and “Unsafer” Languages
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Dimensions & Level of Safety
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• There are many dimensions of safety: memory safety, type safety, 
thread safety, arithmetic safety, guarantees about non-nullness, 
about immutability, …

• For some dimensions, there can be many levels of safety.



Safety: How?
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• Mechanism to provide safety include
‣ Compile-time checks, e.g., type checking

‣ Run-time checks, e.g., array bounds checks, null-ptr checks, etc.

‣ Automated memory management using a garbage collector

‣ Using an execution engine to do the things above

- E.g., Java Virtual Machine (JVM) which performs runtime checks 
and periodically invokes the garbage collector, etc.



Compiled Binaries vs. Execution Engines

72



Case Study 
Checked C: A Safe Extension to C
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Checked C
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• Originating from Microsoft Research

• A new extension to C, aiming for memory safety and type safety

• Open-sourced from its inception



Design Principles of Checked C
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• High performance
‣ New checked pointer types and static checking

• Good human readability and long-term maintainability
‣ Explicit checked pointers and bounds information of memory objects

• Easy incremental porting legacy C code
‣ Mixing checked and legacy C code at fine granularity

‣ Good backward compatibility via bounds-safe interfaces



Checked Pointers
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• _Ptr<T>: pointer to a singleton object of type T 

• _Array_ptr<T>: pointer to an array of type T

• _Nt_array_ptr<T>: pointer to a null-terminated (ends with ‘\0’) array of type T



Checked Pointer: _Ptr<T>
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• _Ptr<T>: pointer to a singleton object of type T 
‣ No pointer arithmetic or subscripting allowed
struct Data {                                                                       
    int val;                                                                        
    long lval;                                                                      
    ...                                                                          
};

_Ptr<struct Data> p = malloc(sizeof(struct Data));                                                
… 
printf("val = %d\n", p->val); 
… 
p++;

null-pointer check inserted by compiler, if not 
determined at compile time

error: arithmetic on _Ptr type 
    p++; 
    ~~^



Checked Pointer: _Array_ptr<T>
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• _Array_Ptr<T>: pointer to an array of object of type T 
‣ Permits pointer arithmetic and subscripting

‣ Bounds declared by programmers

‣ Bounds check inserted by compiler when not provable at compile time

_Array_ptr<int> p = malloc(sizeof(int) * BUF_LEN);                            
… 
int i = p[5]; error: expression has unknown bounds 

    int i = p[5]; 
            ^~~~



Bounds Declaration for _Array_ptr<T>
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_Array_ptr<T> p : count(bounds_expr) = …;

#define BUF_LEN 30                                                              
_Array_ptr<int> p : count(BUF_LEN) = malloc(sizeof(int) * BUF_LEN);                                                                              

int i = p[5];
no dynamic check inserted because compiler knows BUF_LEN > 5

int j = p[30];error: out-of-bounds memory access 
    int j = p[30];

^~~~~
int k = p[var];

null-pointer and bounds check inserted by compiler, if var < BUF_LEN is not provable
_Array_ptr<int> p : count(BUF_LEN / 2) = malloc(sizeof(int) * BUF_LEN);                                                                              allowed
int j = p[15] error: out-of-bounds memory access 

    int j = p[15];
^~~~ Because p’s bounds is [p, p + 14)

_Array_ptr<int> p : count(BUF_LEN + 1) = malloc(sizeof(int) * BUF_LEN);                                                                              
error: declared bounds for 'p' are invalid after initialization



Bounds Declaration for _Array_ptr<T>
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_Array_ptr<T> p : count(lower_bound, upper_bound) = …;

#define BUF_LEN 30                                                              
_Array_ptr<int> p0 : count(BUF_LEN) = malloc(sizeof(int) * BUF_LEN);                                                                              

_Array_ptr<int> p1 : bounds(p0, p0 + BUF_LEN / 2) = p0;                                                                             

int i = p1[15]；
error: out-of-bounds memory access 
    int i = p1[15];

^~~~~~



Design Principles of Checked C
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• High performance
‣ New checked pointer types and static checking

• Good human readability and long-term maintainability
‣ Explicit checked pointers and bounds information of memory objects

• Easy incremental porting legacy C code
‣ Mixing checked and legacy C code at fine granularity

‣ Good backward compatibility via bounds-safe interfaces



Checked Region
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• New keyword: _Checked
‣ Annotating a block of code, from a single statement to a whole source file

‣ Enforcing more strict typing rules, e.g., only checked pointers allowed

‣ Helping programmers to narrow down the scope of memory safety bugs:  

- Checked regions are provably blameless of causing spatial memory safety errors.
• _Unchecked regions: Force the compiler to omit checking



Backward Compatibility with Legacy C Code
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char *strncpy(char *dst, const char *src, size_t len); 

void foo() { 
    _Array_ptr<char> s1 : count(10) = malloc(10);                                 
    _Array_ptr<char> s2 : count(5) = malloc(5);                                   
    ...                                                                          
    dst = strncpy(s1, s2, 5);                                                           
    ...                                                                          
} 

error: passing '_Array_ptr<char>' to parameter of incompatible type 'const char *' 
    strncpy(s1, s2, 5); 
            ^~

• Checked pointers and raw pointers are incompatible by default.



Backward Compatibility with Legacy C Code

84

char *strncpy(_Array_ptr<char> dst : count(n), 
              _Array_ptr<const char> src : count(n), size_t n); 

void foo() { 
    _Array_ptr<char> s1 : count(10) = malloc(10);                                 
    _Array_ptr<char> s2 : count(5) = malloc(5);                                   
    ...                                                                          
    dst = strncpy(s1, s2, 5);                                                           
    ...                                                                          
} 

legal

void bar() { 
    char *s1 = malloc(10);                                                          
    char *s2 = malloc(5);                                                           
    ...                                                                             
    strncpy(s1, s2, 5); 
    ...                                                                              
}

What about calling strncpy() from unchecked C code?

Can we have an mechanism working for 
both checked and unchecked code?



Bounds-safe Interface for strncpy()
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1  char *strncpy(char *dst : itype(_Array_ptr<char>) byte_count(n), 
2                const char *src : itype(_Array_ptr<const char>) byte_count(n),       
3                size_t n) : itype(_Array_ptr<T>) byte_count(n);

itype (inter-operation type): A special type that can be either checked or unchecked type,

                                                depending on the context
1   dst is set to an itype with bounds of n bytes.
2   src is set to an itype with bounds of n bytes.
3   Return value is set to an itype with bounds of n bytes.

void bar() { 
    char *s1 = malloc(10);                                                          
    char *s2 = malloc(5);                                                           
    ...                                                                             
    strncpy(s1, s2, 5);   

...                                                         
}

can compile and run, no bounds checks performed



Bounds-safe Interface for strncpy()
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1  char *strncpy(char *dst : itype(_Array_ptr<char>) byte_count(n), 
2                const char *src : itype(_Array_ptr<const char>) byte_count(n),       
3                size_t n) : itype(_Array_ptr<T>) byte_count(n);

void foo() { 
    _Array_ptr<char> s1 : count(10) = malloc(10);                                 
    _Array_ptr<char> s2 : count(5) = malloc(5);                                   
    ...                                                                          
    strncpy(s1, s2, 5);                                                           
    ...                                                                          
} 

s1 and s2 are bounds-checked at the call site.
can compile and run, as both src and dst are in bounds.

strncpy(s1, s2, 6);

error: argument does not meet declared bounds for 2nd parameter 
    strncpy(s1, s2, 6); 
                ^~~~



Design Principles of Checked C
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• High performance
‣ New checked pointer types and static checking

• Good human readability and long-term maintainability
‣ Explicit checked pointers and bounds information of memory objects

• Easy incremental porting legacy C code
‣ Mixing checked and legacy C code at fine granularity

‣ Good backward compatibility via bounds-safe interfaces



Attempts at a General Definition of Safety
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• A programming language can be considered safe if
‣ You can trust the abstractions provided by the programming language. 

In other words, the language enforces these abstractions and 
guarantees that they cannot be broken.
- E.g., a boolean is either true or false, and never 23 or null.

- Programmers do not need to care how “true/false” is represented in the machine.

• Programs have precise & well defined semantics (i.e., meaning)
‣ More generally, leaving things undefined in any specification is asking 

for security trouble.


